Bachelor of Technology

in

Materials Engineering

Course Structure, Scheme of Evaluation and Syllabi

(Effective from July 2024-25)

Department of Applied Mechanics Motilal Nehru National Institute of Technology Allahabad Prayagraj, U.P. -211004, INDIA

MOTILAL NEHRU NATIONAL INSTITUTE OF TECHNOLOGY ALLAHABAD

VISION

To establish a unique identity for the institute amongst national and international academic and research organizations through knowledge creation, acquisition and dissemination for the benefit of society and humanity.

MISSION

- To generate high quality human and knowledge resources in our core areas of competence and emerging areas to make valuable contribution in technology for social and economic development of the nation. Focused efforts to be undertaken for identification, monitoring and control of objective attributes of quality and for continuous enhancement of academic processes, infrastructure and ambience.
- To efficaciously enhance and expand, even beyond national boundaries, its contribution to the betterment of technical education and offer international programmes of teaching, consultancy and research.

DEPARTMENT OF APPLIED MECHANICS

VISION

To be at the forefront of creation and dissemination of knowledge and technology in the multidisciplinary fields of Engineering Mechanics and Materials towards solving the challenges and needs of the discipline and the society.

MISSION

- > To create and disseminate knowledge resource and sustainable technology through research and innovation in emerging Technological domains.
- To nurture value-based leaders in the Engineering Mechanics, Materials and allied areas capable of solving the challenges and needs of the discipline and the society.

Graduate Attributes (GAs):

- 1. **Scholarship of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesize existing and new knowledge, and integration of the same for enhancement of knowledge.
- 2. **Critical Thinking**: Analyze complex engineering problems critically, apply independent judgment for synthesizing information to make intellectual and/or creative advances for conducting research in a wider theoretical, practical and policy context.
- 3. **Problem Solving**: Think laterally and originally, conceptualize and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.
- 4. **Research Skill**: Extract information pertinent to unfamiliar problems through literature survey and experiments, apply appropriate research methodologies, techniques and tools, design, conduct experiments, analyze and interpret data, demonstrate higher order skill and view things in a broader perspective, contribute individually/in group(s) to the development of scientific/technological knowledge in one or more domains of engineering.
- 5. **Usage of modern tools**: Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of the limitations.
- 6. **Collaborative and Multidisciplinary work**: Possess knowledge and understanding of group dynamics, recognize opportunities and contribute positively to collaborative-multidisciplinary scientific research, demonstrate a capacity for self-management and teamwork, decision-making based on open-mindedness, objectivity and rational analysis in order to achieve common goals and further the learning of themselves as well as others.
- 7. **Project Management and Finance**: Demonstrate knowledge and understanding of engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors.
- 8. **Communication**: Communicate with the engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
- 9. **Life-long Learning**: Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- 10. Ethical Practices and Social Responsibility: Acquire professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and an understanding of responsibility to contribute to the community for sustainable development of society.
- 11. **Independent and Reflective Learning**: Observe and examine critically the outcomes of one's actions and make corrective measures subsequently, and learn from mistakes without depending on external feedback.

DEPARTMENT OF APPLIED MECHANICS

Bachelor of Technology in Materials Engineering

Objective of the Programme

Prepare the young minds to understand the need of materials for engineering and strategic applications. The course focuses on the engineering and development of materials including cutting edge research through computations and experimentations.

Degree on Offer and Annual Intake

B. Tech/B. Tech (Honours) in Materials Engineering from Department of Applied Mechanics: 30 students through JEE (Mains).

PEO-1	To understand the importance of materials in life and the relationship between structure, properties and processing to evaluate the performance of materials in engineering applications.
PEO-2	To characterize materials and to practice amicable selection of materials for various applications.
PEO-3	To develop effective and eco-friendly materials for generic and sustainable applications.
PEO-4	To inculcate ability in student to pursue life-long learning to acquire skill-sets for professional practices.

PROGRAM EDUCATIONAL OBJECTIVES

Mapping of Mission statements with program educational objectives Mission Statement

Mission statements	PEO-1	PEO-2	PEO-3	PEO-4
MS1	\checkmark	\checkmark	\checkmark	
MS2			\checkmark	
MS3		\checkmark	\checkmark	
MS4	\checkmark	\checkmark	\checkmark	

Mapping of program educational objectives with graduate attributes

PEO	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11
РЕО- 1	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark		
PEO- 2	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark				
PEO- 3	\checkmark	\checkmark	\checkmark		\checkmark					\checkmark	
PEO- 4			\checkmark								

PO1	To understand the correlation between structure and properties, their constitutive equations; phenomena to improve the performance of materials.
PO2	Materials synthesis and structural modification for improvement in the properties of materials.
PO3	Study and understanding of materials/products for their material behavior.
PO4	Understanding of metallurgical processes to produce products as per specifications.
PO5	Knowledge of different fabrication techniques of materials such as metals, alloys and composites.
PO6	Characterize and evaluate materials for specific applications.
PO7	Understanding of Materials modeling and simulations
PO8	Understanding of sustainable eco-friendly development of materials for different applications.
PO9	Academic and industrial project management and logistics.
PO10	Life-long learning, practices of professional ethics, moral and human values to improve professionalism.

PROGRAM OUTCOMES: At the end of the program the student will be able to:

Mapping of program outcomes with program educational objectives

РО	PEO1	PEO2	PEO3	PEO4
1.	3		2	
2.	2	3	2	
3.	1	2	3	1
4.	3	2	2	1
5.	1	2	3	
6.	2	3	2	1
7.	3		2	
8.	2	2	3	1
9.		1	2	3
10.	1	1	1	3

1: Slightly 2: Moderately 3: Substantially

S. No.	Code	Category	Course	L-T-P	Credit	Contact Hours
110.			Semester-I		1	110015
1.	PHN11502 /CYN11502	CEF	Engineering Physics-II/Engineering Chemistry-II	2-1-2	4	5
2.	MAN11101	CEF	Mathematics-I	3-1-0	4	4
3.	HSN11600/ CSN11601	PCE	Professional Communication/Introduction to Artificial Intelligence andMachine Learning	2-0-2	3	4
4.	AMN11103	CEE	Introduction to Materials Engineering	3-0-0	3	3
5.	AMN11102	CEE	Engineering Mechanics	3-0-2	4	5
6.	MEN11602/ MEN11601	PCE	Workshop and Manufacturing Processes/Engineering Graphics	1-0-2	2	3
7.	IDN11600	PCE	Introduction to Environmental and Climate Change	2-0-0	2	2
8.	******	EAA	Extra Academic Activity-A/ Extra Academic Activity-B	0-0-4	2	4
				Total	24	30

Curriculum Structure of B. Tech. Materials Engineering

			Semester-II			
1.	CYN12502/ PHN12502	CEF	Engineering Chemistry-II/Engineering Physics-II	2-1-2	4	5
2.	MAN12106	CEF	Mathematics-II	3-1-0	4	4
3.	CSN12601/ HSN12600	PCE	Introduction to Artificial Intelligence and Machine Learning/Professional Communication	2-0-2	3	4
4.	AMN12103	CEE	Metallurgical Thermodynamics and Kinetics	3-1-0	4	4
5.	AMN12102	CES	Fluids Mechanics	3-0-0	3	3
6.	MEN12602/ MEN12601	PCE	Engineering Graphics/Workshop and Manufacturing Processes	1-0-2	2	3
7.	******	EAA	Extra Academic Activity-A/ Extra Academic Activity-B	0-0-4	2	4
				Total	22	27

			Semester-III			
1.	AMN13111	CEE	Phase Diagrams and Phase Transformation	3-0-2	4	5
2.	AMN13101	CEE	Mechanics of Materials	3-0-2	4	5
3.	AMN13112	CEE	Extractive Metallurgy	3-0-0	3	3
4.	AMN13113	CEE	Polymer Science and Engineering	3-0-2	4	5
5.	EEN****	CES	Basic Electrical and Electronics	2-0-2	3	4
6.	HSN13601	CEF	Management Concepts and Application/ Business Economics	3-0-0	3	3
7.	******	EAA	Extra Academic Activity-B	0-0-4	2	4
				Total	23	29

			Semester-IV			
1.	AMN14102	CES	Applied Mathematics and Computation	3-0-2	4	5
2.	AMN14109	CEE	Ceramic Engineering	3-0-0	3	3
3.	AMN14110	CEE	Electrical, Electronic and Magnetic Materials	3-0-0	3	3
4.	AMN14111	CEE	Mechanical Behaviour of Materials	3-1-0	4	4
5.	AMN14112	CEE	Characterization of Materials	3-0-2	4	5
6.	******	EAA	Extra Academic Activity-B	0-0-4	2	4
				Total	20	24

			Semester-V			
1.	AMN15106	CEE	Materials Selection and Design	3-0-2	4	5
2.	AMN15107	CEE	Nano-materials	3-0-2	4	5
3.	AMN15108	CEE	Advances in Materials Application	3-0-0	3	3
4.	AMN15109	CEE	Composite Materials	3-0-0	3	3
5.	AMN****	CEE	Core Elective Course - 1	3-0-0	3	3
6.	AMN****	CEE	Core Elective Course - 2	3-0-0	3	3
7.	AMN15351	CEE	Group Project/Research Project-I (Contd.)	1-0-2	2	2
				Total	22	24

			Semester-VI				
1.	AMN16104	CEE	Introduction to Computational Materials Science	3-0-2	4	5	
2.	AMN16105	CEE	Materials in Services	3-0-2	4	5	
3.	AMN****	CEE	Core Elective Course – 3	3-0-2	4	5	
4.	AMN****	CEE	Core Elective Course – 4	3-0-0	3	3	
5.	AMN****	CEE	Core Elective Course – 5	3-0-0	3	3	
6.	HSN16603	PCE	Soft Skills and Personality Development	2-0-1	3	3	
7.	AMN16351	CEE	Group Project/Research Project -II (Contd.)	0-0-4	2	4	
	Total						

			Semester-VII			
1.	AMN17102	CEE	Modelling and Simulation in Materials Processes	1-0-4	3	5
2.	AMN17103	CEE	Machine Learning in Materials Science	3-0-2	4	5
3.	AMN****	CEE	Core Elective Course – 6	3-0-2	4	5
4.	AMN*****	CEE	Core Elective Course – 7	3-0-0	3	3
5.	AMN****	CEE	Core Elective Course – 8	3-0-0	3	3
6.	AMN17351	CEE	Group Project/Research Project -III	0-0-8	4	8
				Total	21	29

	Semester-VIII											
1.	AMN18351	IT/GP	Industrial Training/ Group Project	0-0-28	14	28						
				Total	14	28						

S No	Courses	L-T-P-Credit		
Core E	ective Course – 1 and 2	L-1-1-Cleun		
1	AMN15255 High Temperature Materials	3-0-0-3		
2	AMN15256 Ferroelectric Materials	3-0-0-3		
3	AMN15257 Energy Materials	3-0-0-3		
4	AMN15258 Smart Materials and Systems	3-0-0-3		
5	AMN15259 Materials for Nuclear Applications	3-0-0-3		
6	AMN15260 Electronic Ceramics	3-0-0-3		
7	AMN15261 Automotive and Aerospace Materials	3-0-0-3		
8	AMN15262 Biomaterials	3-0-0-3		

List of Electives for Core electives for 5th Semester

List of Electives for Core electives for 6th Semester

S No	Courses	L T D Creadit
Core El	ective Course – 3	L-T-P-Credit
1	AMN16250 Finite Element Method	3-0-2-4
2	AMN16251 Optimization Methods in Engineering	3-0-2-4
3	AMN16252 Non-Destructive Testing	3-0-2-4
4	MAN***** Statistics for Engineers	3-1-0-4
Core E	ective Course – 4	
5	AMN16253 Electroacoustic Transducers	3-0-0-3
6	AMN16254 MEMS and Bio-MEMS	3-0-0-3
7	AMN16255 Plasma Technology	3-0-0-3
8	CSN***** Data Structure	2-0-2-3
Core El	ective Course – 5	
9	AMN16256 Fatigue and Fracture of Materials	3-0-0-3
10	AMN16257 Continuum Damage Mechanics	3-0-0-3
11	AMN16258 Physical Chemistry of Steels	3-0-0-3

List of Electives for Core electives for 7th Semester

S No	Courses	
Core E	lective Course – 6	L-T-P-Credit
1	AMN17255 Advanced Manufacturing	3-0-2-4
2	AMN17256 Thin-films and Applications	3-0-2-4
3	AMN17257 Powder Metallurgy	3-0-2-4
Core E	lective Course – 7	
4	AMN17258 Corrosion Science and Engineering	3-0-0-3
5	AMN17259 Tribology	3-0-0-3
6	AMN17260 Life Cycle Assessment	3-0-0-3
7	AMN17261 Critical Minerals and Supply Chain of Materials	3-0-0-3
Core E	lective Course – 8	
8	AMN17262 Nano-Fluids	3-0-0-3
9	AMN17263 Carbon Nanotubes and Nanostructures	3-0-0-3
10	AMN17264 Alternate Routes to Steel Manufacturing	3-0-0-3

Semester-I

				PHN11	502/PHN1	2502 Engi	neerin	ig Ph	ysics-II			
Designation	l	:	Compulse			0		0	•			
Pre-requisit		:	None	•								
Credit and Contact hrs		:	2(L) - 1(T	(1) - 2(P) - 4	4(Cr)							
Contact nrs			Theory Pa					Dec	tical Dante			
Assessment				ester Exam	40%			Practical Part: End Semester Exam: 15%				
Methods		:		ester Exam					cher Assess			
Methous				Assessment				Tea	chel Assess	anent. 13%	1	
				essful stud		rn•						
							dersta	nd m	any related	technolog	ieseo in	erference
				 Basics of optics are introduced to understand many related technologies e.g., inter polarization and diffraction, etc. 								contenence,
				2. Laser is a powerful tool and is used in several applications relevant to mechanical and								
Course		:		2. Easer is a powerful tool and is used in several appreadors relevant to incentance and production engineers. Fundamentals of lasers are introduced to explain the working and use								
Outcomes		•	of las	-						to enpium		ig und use
					amiliar wit	h the unexp	ected	outco	omes in the	regime of e	extremelv ł	nigh-speed
objects. The topic is introduced to help them understand many technical objects an phenomena such as GPS technology, the physics of astronomical objects, etc.									5			
Modes of			Talla and	ahalla Dam		:		Dam			-4-	
Delivery : Talk and chalk, Demonstration in laboratory and Power point presentations etc.												
Mapping of	cours	e o	utcomes wi	th program	outcomes	_						_
Course	PO	1	PO2	PO3	PO4	PO5	PC)6	PO7	PO8	PO9	PO10
outcome			102	105	104	105	10		107	100	109	1010
CO1											,	
CO2				√			١	/		√		
CO3												
Physical O in thin films				Condition of	of observing	g interferen	ce. Fre	esnel'	's Biprism.	Stoke's tre	atment. Int	erference
Diffraction			-	etion Sin	ale slit Do	ubla slit and	IN di	it or r	lane transn	nission grat	ing Ravlei	ah's
criterion of								n or p		iission grad	ing. Rayiei	gii s
Polarisation	n: Pol	aris	sation by re	flection. Do	ouble refra	ction. Half	wave a	and a	uarter wave	plates. Pro	oduction an	d analysis
of plane. ell												
Laser: Char	-		-	-		-	-				-	
coefficients												
Special The	ory of	Re	lativity Fra	me of refer	ence. Inert	ial and non	-inerti	al fra	mes. Postul	ates of spe	cial theory	of
relativity, L												
Mass equiva				1		U						0.
List of expe	rime	nts	in practica	al:								
1. To measu					extant.							
2. Interferen												
3. Interferen												
4. Diffractio		-		1	ng.							
5. Specific 1												
6. Resolving												
7. Surface to	ension	me	easurement	•								
8. Variation	of ma	agn	etic field al	ong the axi	s of a curre	ent carrying	coil.					
9. Magnetic			tribution du	e to Helmh	oltz coil se	etup.						
References												
									New York,	1968)		
			Optics (Mc				2017))				
3. E.	Hecht	. 0	ptics (Addi	son-Wesley	. New Yor	k. 2002)						

- E. Hecht, Optics (Addison-Wesley, New York, 2002)
 A. Beiser, Concepts of Modern Physics (McGraw-Hill, New York, 2003)
 B. B. Laud, Lasers and Non-Linear Optics (Wiley, New York, 1991)

				CYN115	02/CYN12	502 Engin	eering Ch	emistry-II			
Designation			Compulse	ory							
Pre-requisite	es		Nil								
Credit and Contact hrs			2(L) - 1(T	$(\Gamma) - 2(P) - 4$	4(Cr)						
Assessment Methods		:	Mid Sem	art: ester Exam ester Exam Assessment	: 20%		Er	actical Part: Id Semester I eacher Assess			
Course Outcomes:The successful student will learn: 1. To achieve the understanding of different fundamental chemical conceptivel, corrosion, lubricant, polymer, water chemistry, and biochemical s 2. The ability to interpret the experimental data related to fuel, lubricant chemistry. Also, understand and draw inferences related to the biochemical solutions in biological systems. 3. Develop the capability to apply the knowledge for the industrial application.							hemical syn l, lubricant le biochemi	nthesis and , polymer, cal process	process. and water		
Modes of Delivery		:		chalk, Pow							
Mapping of	cours	e oi	utcomes wi	ith program	outcomes						
Course outcome	Course PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1 2		2	1	1	1	-	-	-	1	1
CO2	CO2 2 2 1 1 2 -				-	-	-	1	2		
CO3	2		2	1	1	1	-	-	-	1	1
Syllabus											

Chemical Bonding: Drawbacks of Valence bond theory, Molecular orbital theory of small molecules, bonding in metals, semiconductors, and insulators, impurity semiconductors, symmetry, symmetry elements, point groups and group theory. Fuels: Classifications, calorific values, analysis of solid fuels, liquid fuels and their properties, refining, cracking and reforming of petroleum, knocking and octane rating, biofuels.

Corrosion and Lubricants: Causes and effects of corrosion, theories of corrosion, types, factors of corrosion, its prevention and control, case study on corrosion control in industry. Corrosion and lubricant relation, functions of lubricants, tribology and lubrication, classification, mechanism and testing of lubricants.

Polymers: Classification (origin: natural, synthetic, semi-synthetic, biopolymers (natural & synthetic) and biodegradable polymers), types: plastics, rubber, fibre, adhesives, composites, thermoplastic and thermosetting polymers, characterization and properties, industrial uses.

Water Chemistry: Importance of water, sources of impurities and their treatment processes, hard water, alkalinity of water, softening of water, boiler feed water, boiler corrosion, prevention of scale formation, break point of chlorination, modern water purification systems

Biochemical Synthesis and Process: Introduction, manufacture of ethyl alcohol and acetic acid by fermentation, role of metal ions (Fe and Co) in biological systems.

Practical: List of Experiments

Part A:

1. To determine the percentage of available chlorine in the supplied sample of bleaching powder.

2. To determine the total hardness, Ca2+ hardness, and Mg2+ hardness in the supplied water sample by titrating with standard EDTA solution.

3. To determine the alkalinity of the supplied water sample.

4. To determine the strength of supplied K2Cr2O7 solution using Ferrous Ammonium Sulphate solution as intermediate and Potassium Ferricyanide solution as an external indicator.

5. Preparation of Methyl Orange using a diazonium coupling reaction.

Part B:

6. Determination of flash point of oils by Abel's apparatus.

7. Determination of flash point of lubricating oil by Pensky-Martens closed cup tester.

8. To study the kinematic viscosity of the given lubricating oil at various temperatures using a Redwood viscometer.

9. To find out the aniline point of the given fuel samples.

10. Determination of viscosity average molecular weight of a polymer sample by Ostwald Viscometer.

Part C:

11. Preparation and characterization of biodiesel from waste cooking oils

Text Books:

1. Engineering Chemistry, Jain & Jain, 2013, Dhanpat Rai Publishing Co., New Delhi.

2. Engineering Chemistry, Shashi Chawla, 2017, Dhanpat Rai Publishing Co., New Delhi.

Reference Books:

1. Inorganic Chemistry: Principles of Structure and Reactivity, James E. Huheey, Ellen A. Keiter, Richard L. Keiter, and Okhil K. Medhi, 2006, Pearson Education, India.

3. Elements of Physical Chemistry, Peter Atkins and Julio D. Paula, 2006, Oxford, UK.

4. Engineering Chemistry - A Textbook, Harish Kumar Chopra and Anupama Parmar, 2007, Narosa Publishing House Pvt. Ltd., New Delhi.

5. Polymer Science, V R Gowariker, N V Viswanathan, and Jayadev Sreedhar, 2021, New Age International Private Limited, New Delhi.

6. Biochemical Methods, A. Pingoud, C. Urbanke, J. Hoggett, and A. Jeltsch, 2002, Wiley-VCH Verlag GmbH, UK. 7. Online resources.

^{2.} Chemical Applications of Group Theory, F. Albert Cotton, 2003, John Wiley & Sons, New Jersey, USA.

					MAN11	101 Math	ematics-I					
Designation		:	Compulso	ory								
Pre-requisite	es	:	Nil									
Credit and Contact hrs		:	3(L) - 1(T	(T) - 0(P) - 0(P)	4(Cr)							
Assessment Methods		:	Theory E	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks								
Course Outcomes		:	 The the f engineric eng	course pro function of neering pro elopment of ima-minim olems. a unit provi- ength, surf olve comple- ce students ch frequent lents will le y will also niques betw thion metho- neering pro erential equ	single and oblems. of basic und na of function des sufficient vace area, von ex engineen familiar wi ly appear in earn basic co learn to cal ween them. ods of the o oblems. The nations. Als	ic understa several va lerstating c on of sever ent knowle olume, the ting proble in engineer concepts lil culate line rdinary dif is unit will o, students	riables, wh of partial de ral variable dge to appl moment o ms. c knowled ing probler ke gradient , surface, a ferential ec help the sus	ge of beta, g ns.	damental for change of v s some eng nd triple int id the centro gamma, and il derivative integrals an fundamenta ave a clear solution tec	or solving n ariables, Ja ineering-ba egrals in ca e of gravity d error func e, divergenc nd apply co al concepts understand	nany cobins, ised alculating of surfaces ctions, ee, curl, etc. nversion for ling of	
Modes of Delivery		:		chalk, etc.								
Mapping of	course	: 01	itcomes wi	th program	outcomes				-	-		
Course outcome	Course PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	3		3	1	1	-	-	-	-	-	1	
CO2 3			3	2	2	-	-	-	-	-	1	
CO3 3			3	3	3	-	-	-	-	-	2	
CO4 3			3	1	2	-	-	-	-	-	1	
CO5 3			3	3	3	-	-	-	-	-	2	
CO6	3		3	3	3	-	-	-	-	-	2	
Syllabus	Syllabus											

<u>Syllabus</u>

Continuity and Differentiability: Limit and Continuity (ϵ - δ definition of one variable), Rolle's Theorem, Lagrange and Cauchy Mean Value Theorem, Limit and Continuity (ϵ - δ definition for several variables) and Differentiability for several variables.

Partial Derivatives and Taylors Theorem: Partial derivatives, Euler's homogeneous theorem, Implicit function, Change of variables, Jacobian, Taylor's theorem for functions of several variables. Extrema of functions of several variables, Lagrange method of undetermined multipliers.

Integral Calculus: Multiple integrals (Double & Triple Integral), Change of order of integration, Area of bounded region, Arc length of curve, Volume and Surface area of solid of revolution, Multiple integral by change of variables, Dirichlet integrals, Moment of inertia, Center of gravity.

Beta and Gamma Functions: Improper integrals, Convergence of improper integral, Beta Function, Gamma functions, Improper Integrals involving a parameter.

Vector Calculus: Gradient, Directional derivatives, Divergence and Curl, line integral, Green's theorem, Surface and volume integrals, Gauss theorem, Stoke's theorems and their applications.

Ordinary Differential Equation: Existence and Uniqueness of solutions of First order ODE, Exact Differential Equation, Solution of Linear Differential Equation, Higher order Linear Differential Equation, Solutions of Homogeneous and Non-homogeneous ODE (CF+PI), Variation of parameters, Method of undetermined coefficients. **Text Books:**

1. R. K. Jain and S. R. K. Iyenger, Advanced Engineering Mathematics, Edition: 5th, 2016 Narosa Pub. House 2. B.S. Grewal, Higher Engineering Mathematics, 44nd edition, 2018, Khanna Publishers.

Reference Books and Online Source:

- Thomas and Finney, Calculus, 10th Edition, 2001, Addison Wesley
 Erwin Kreyszig, Advanced Engineering Mathematics,10th Edition, 2015, John Wiley & Sons.
 Online Source: NPTEL.

		HSN11600/HSN12600 Professional (Communication							
Designation	:	Compulsory								
Pre-requisites	:	Nil								
Credit and Contact hrs	:	(L) - 0(T) - 2(P) - 3(Cr)								
Assessment Methods	:	Theory Part: End Semester Exam: 40% Mid Semester Exam: 20% Teacher Assessment: 10%	Practical Part: End Semester Exam: 15% Teacher Assessment: 15%							
Course Outcomes	 The successful student will learn: Understand basic grammar princi Write clear and coherent passage Write effective letters for job app Prepare technical reports and inter Enhance reading comprehension 									
Modes of Delivery : Talk and chalk, Power point presentations, and practical etc.										

Syllabus

Remedial Grammar: It is the basic core for the development of the English language and it can be more enhanced through our mini language lab currently, though in future with computerized language lab containing tense busters and other softwares to develop interests in students to learn language through games. Content: Articles, Prepositions, Tenses, Active and Passive forms.

Effective comprehension: In this global era effective comprehension is an attempt to develop in technical students to comprehend different topics relative to varied scientific and social myriad happenings in the world thus bridging the gap from the scientific- technical culture from the liberal arts culture. Content: Passages from News Papers, magazines and short comprehensions from GRE packages

Effective Composition: Liberal space has been devoted to written composition and an overall initiative will be taken to show the students that most effective writing scientific or literary-adapts certain principles of rhetoric which can be learnt and put into practice through artistic writing. Content: Discussions on varied topics in tutorials, excerpts from magazines and newspapers.

Pronunciation Skill: One of the important aspects in communication and personality impression of the students. This will be enhanced through the aid of language lab and the instructors own drilling exercises. So that availing such a skill can create great space for themselves and for job in this age of globalisation, where overall developed personality is more easily absorbed. Content: With the help of language lab and instructors drilling exercises

References books

1. A Textbook of English for Engineers and Technologists (combined edition, Vol. 1 & 2); Orient Black Swan 2010.

			CSN1160	1 Introduc	tion to Ar	tificial Int	elligend	ce and	d Machin	e Learning	g	
Designation		:	Compulse	ory								
Pre-requisite	es	:	Nil									
Credit and Contact hrs		:	2(L) - 0(1	(1) - 2(P) -	3(Cr)							
Assessment Methods		•	Mid Sem	art: ester Exam ester Exam Assessment	: 20%			End		Exam: 159 ssment: 159		
Course Outcomes:The successful student will learn: 1. Understand the basics of programming lange 2. Understand data storage, processing, and its 3. Explain the basics of AI and its applications 4. Apply the machine learning algorithms f Applying 5. Develops the ability to analyze problem approaches Understanding							use in Anal or the	n model ev yzing e classific	valuation U	nderstandin regression	ng problems.	
Modes of Delivery		:			ver point pr		s, and p	ractic	al etc.			
Mapping of	cours	e oi	utcomes wi	th progran	n outcomes							
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6		PO7	PO8	PO9	PO10
CO1	3		3	2	3	1	-		-	-	-	-
CO2	2		3	3	2	2	-		-	-	-	-
CO3	2		2	2	3	-	1		-	-	-	-
CO4	3		3	3	3	2	1		-	-	-	-
CO5	3		3	3	3	2	1		-	-	-	-
Syllabus Unit-1: Fun Operators, C Unit-2: Prog the data, Stri Unit 3: Intra	Contro gramr ing Oj	1 Si nin pera	tatements, 1 g Construc ations, Mat	Iterations, a ts:Data Im hematical	and Function port and E operations	ons. xport, Ope on arrays.	erations	on D	ata: Trave	ersing, Sea	rching, and	

Unit 3: Introduction to Artificial Intelligence:Evolution of AI, Various Approaches to AI, Intelligence and Machines, Intelligent Agents, Solving Problems by Searching, Considering the uses of AI for Society.

Unit-4: Introduction to Machine Learning: What and Why? Types of Machine Learning:Supervised, Unsupervised and Reinforcement learning, Under-fitting vs Over- fitting Problem, Training, Testing and Validation Process, Applications of Machine Learning, Linear Regression, Naïve Bayes Classifier, KMeans.

Text Books:

1. Russell, Stuart, and Peter Norvig. "Artificial intelligence: a modern approach."(2002).

2. Mueller, John Paul, and Luca Massaron. Artificial intelligence for dummies. John Wiley & Sons, 2021.

Reference Books:

1. Alpaydin, Ethem. Introduction to machine learning. MIT Press, 2020. Michalski, Ryszard Stanislaw, Jaime Guillermo Carbonell, and Tom M. Mitchell, eds. Machine learning: An artificial intelligence approach. Springer Science & Business Media, 2013

				AMN111	03 Introdu	ction to M	aterials En	gineering			
Designation		:	Compulse					8 8			
Pre-requisite		:	None	2							
Credit and Contact hrs		:	3(L) - 0(1	(P) - 0(P) - 0(P)	3(Cr)						
Accessment			Theory E	xaminatio	n: (Schem	e) End Sem	lester Exam	n: 50 marks			
Assessment Methods		:				Mid Sen	nester Exan	n: 25 marks			
Methods						Teacher .	Assessment	t: 25 marks			
Course . Outcomes . 1. Primary objective is to present the basic fundamentals of materials science and engineer Expose to different classes of materials, their properties, structures and imperfections prein them. 2. Help understand the subject with ease by presenting the content in a simplified and log sequence at a level appropriate for students/teachers/researchers. 3. Aid the teaching learning process through relevant illustrations, animations, web content practical examples. Highlight important concepts for each topic covered in the subject.								ons present and logical ontent and			
Modes of Delivery : Talk and chalk, Power point presentations, and practical etc.											
Mapping of course outcomes with program outcomes											
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
SyllabusIntroduction- Historical perspective of Materials Science, Structure and properties relationship of Engineering Materials, Classification of materials, Advanced Materials, Nano-materials. Structure of Solids and Characterization of Materials- Introduction to crystal structures and systems, Metallic structures, Ceramic crystal structures, Crystallographic directions and planes, Miller indices, Density computations, Crystallography, Diffraction methods, Electron microscopy, Metallography, Thermal characterization techniques. Imperfections in Solids- Point defects, Dislocations, Interfacial Defects, Bulk defects. Mechanical Behaviour of Materials- Elastic and plastic properties, Creep, Fatigue, Fracture. Ceramic Materials- Ceramic types, Properties, Processing Application, Advanced ceramics. Polymers and Composites- Introduction, Applications, Particle reinforced composites, Fiber reinforced composites, Structural composites. Economic, Environmental and Social issues of Material Usage- Economic considerations, Environmental and societal considerations, Recycling issues, Life cycle analysis and its use in design.References books 1.Raghavan V, "Materials Science and Engineering".											
2. Cal 3. Geo 4. Van	llister orge E n Vlao	W. E. E ck,	D. Jr., "Ma Dieter, "Mea "Elements	aterials Science a chanical Mo of Material Science in	ence and Er etallurgy". Science an	ngineering: nd Engineer		iction".			

			r		AMN1110	2 Enginee	ring N	Aech	anics			
Designation	l	:	Compulse	ory								
Pre-requisite	es	:	Nil									
Credit and			2(1) 0(7	(D)	4(C)							
Contact hrs		:	3(L) - 0(1)	$(\Gamma) - 2(P) - \frac{1}{2}$	4(Cr)							
			Theory Pa	art:				Prac	ctical Part:			
Assessment			End Seme	ester Exam	: 40%			End	Semester	Exam: 15%	6	
Methods		·	Mid Seme	ester Exam	: 20%			Tea	cher Asses	sment: 15%	6	
			Teacher A	Assessment	: 10%							
			The succ	essful stud	ent will lea	irn:						
					antify all th							
			free body diagrams, their resultant and its location and use of equations of equilibrium								rium.	
Course			2. To locate the centroid of an area and calculate the moment of inertia of a section								section and	
Outcomes		·	asses	sment of th	e internal f	orces in be	ams.					
			3. Appl	y Newtons	laws of mo	tion to par	ticles a	and ri	gid bodies.			
			4. Solve	e the proble	ems involvi	ng kinema	ics, en	nergy	and mome	ntum and	write simp	le program
			for p	roblems of	real life.							
Modes of			Tallrand	ahalle Dow	an naint nu	contotions	and n	nostic	aal ata			
Delivery		·	Talk and	chark, Pow	er point pre	semations	and p	ractic	cal etc.			
Mapping of	course	e oi	utcomes wi	th program	outcomes							
Course	PO1		DOO	DO2	DO 4	DOS	DOC		D07	DOQ	DOO	DO10
outcome	PO1		PO2	PO3	PO4	PO5	PO6)	PO7	PO8	PO9	PO10
CO1	3		2	-	-	-	-	-	-	1	-	2
CO2	3		2	-	-	-	-	-	-	1	-	2
CO3	3	3		1	1	-	-		-	-	-	2
CO4	3		3	2	1	-	-	-	-	-	-	-
CO5	3		3	2	2	1	-	-	-	-	-	-
Syllabus			-									l
Review of F and Bending Kinematics & Momentum Plane Kinen Rotating axi Introduction List of expe 1. Friction b 2. Friction b 3. Mass mon 4. Equilibriu 5. Belt and p	g mom and K um, In , Stead natics is, For- n to thr criment betwee ment of um of j pulley	nent ine npa ly r anc ce, ce, r ee- ts: n in n in of in par	t diagrams. tics of part act, and C mass flow, d Kinetics of Mass and A dimensiona nclined plan nclined plan nertia of fly allel forces	icles: Plane entral Ford Variable m of a rigid bo Acceleratio al kinemati ne and slidi ne and rolle wheel	e and Space ce Motion. ass. ody: Relativ n, Work & cs and kine ing box	motion, F Kinetics e velocity Energy, Ir	orce, N of sys and Ac apulse	Aass a tem cceler & M	and Accele of particles ation, Insta	ration, Wo s: Conserv	ork & Ener	gy, Impuls Energy and
6. Screw jac												
7. Polygon l		for	ces									
References												
1. Meriar Adapta	m J.L. ation),	, I W	iley India.		on J.N., E cs for Engi					-		
					, Prentice H			uro,	• 01.2- Dyll	annes, wie	Giaw Hill,	
J. Shame	., т.п.,	, EI	ignicering.	witcenames,	, пленисе п		ciiii.					

Shames I.H., Engineering Mechanics, Frenuce Han, New Denn.
 Hibbeler R.C., Engineering Mechanics - Vol.1 –Statics, Vol.2- Dynamics, Pearson Press

			MEN1	1602/MEN	N12602 Wo	orkshop an	d Manufa	cturing Pro	ocesses		
Designation		:	Compulse			•		0			
Pre-requisite	es	:	None								
Credit and Contact hrs		••	1(L) - 0(7	$(\Gamma) - 3(P) - 3(P)$	3(Cr)						
Assessment Methods		:	Mid Sem	art: ester Exam ester Exam Assessment	: 20%		Enc	ctical Part: l Semester l cher Assess			
Course:The successful student will learn: 1. Students will be able to understand the importance of materials, processes and systems. 2. Students will be able to understand the metal casting, n perform casting of metals, forging and sheet metal operatio 3. Students will be able to understand the machining operat They will be able to perform machining operations on Latle and gas welding processes.4. Students will be able to learn and perform operations re molding, and Computer Numerical Control (CNC) machine								asting, meta operations g operation s on Lathe 1 rations relat	al working through pra s, permane machine an	process ar actical class ant joining d joining th	nd able to es. processes. prough arc
Modes of Delivery		:		chalk, Pow		esentations,	and practic	cal etc.			
Mapping of	cours	e o	utcomes wi	th program	outcomes				1	1	
Course outcome PO1			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1 2			1	1	-	2	1	1	-	1	1
CO2	2		1	1	-	-	1	1	-	1	1
CO3	CO3 2 1			1	-	-	1	1	-	1	1
CO4 2 1 1 - 3 1 1 - 1						1					

Syllabus

Concept of Manufacturing- Manufacturing definition; Role of materials, processes and systems in manufacturing; Classification and brief introduction of engineering materials such as metals & alloys, Classification and brief introduction of manufacturing processes.

Sand Casting Process of Metals- Elements of Green Sand Mould; Pattern design and making, Method of Preparation of Green Sand Mould; Casting Defects

Metalworking Processes- Classification of Metalworking Processes-brief introduction of bulk and sheet metal processes, Hot Vs Cold Working; Hot and Cold Rolling; Types of Rolling Mills, Forging, Extrusion, Drawing

Machining Processes: Classification of machining processes & machine tools; Construction, Specification, and operations on Lathe Machine and Drilling machine

Fabrication Processes- Classification of Welding Operations, Types of Joints & Welding Positions; Brief description of Arc, Resistance and Gas welding techniques. Brazing and Soldering.

List of Practical

1. Safety in Workshop (Demonstration) Safety precautions and utilization of hand tools and machines of different shops with safe working habits. Introduction to measuring equipments and gauges of different shops.

2. Carpentry Study of wood works, types of hand tools and machine. Making of one job involving wood work joint

3. Fitting Study of different fits and hand tools. Making of one job involving fitting to size, malefemale fitting with drilling and tapping

4. Welding Study of electric arc welding and gas welding, tools, types of weld joints and safety precaution during welding. Making of one joint using electric and gas welding. Students will be introduced to brazing and soldering (demonstration)

5. Sheet Metal Work Study of different hand tools, machine and sheet metal joints. Making of one utility job in sheet metal

6. Foundry Principles of molding, methods, core & core boxes, preparation of sand mould of given pattern and casting (demonstration)

7. Black Smithy Introduction to hot working and Study of forging hand tools, furnace and machine. Making a job on hot upset forging.

8. Machining Study of lathe machine, cutting tools and turning related operations. Making of one job on lathe machine including facing, step and taper turning, threading operations.

9. Plastic Processing Introduction to plastics and different plastic molding techniques. Study of injection molding process with demonstration.

10. Computer Numerical Control (CNC) Introduction to automation & CNC, Assembly of models of CNC, CNC wood router, engraving and exposure to part programming. Preparation of part program for simple profiles. Making a job on

CNC (Demonstration).

11. Mini Project Team activity - Fabrication of prototype model based on above practical

Text Books:

1 Principles of Modern Manufacturing: Materials, Processes and Systems Mikell P. Groover John Wiley **References books**

- 1. Elements of Workshop Technology (Volume 1: Manufacturing Processes, Volume 2: Machine Tools) S. K. Hajra Choudhury, A. K. Hajra Choudhury and N. Roy Media Promoters & Publishers Pvt Ltd., 2010
- 2. Manufacturing Engineering and Technology Serope Kalpakjian and Steven R. Schmid Pearson, 2013
- 3. Machinery's Handbook Erik Oberg, Franklin D. Jones, Holbrook L. Horton, Henry H. Ryffel, and Christopher J. McCauley Laura Brengelman Industrial Press, Inc., 2020
- 4. Mechatronics HMT McGraw Hill Education, 2017
- 5. Manufacturing Processes I, https://nptel.ac.in/courses/112107144 NPTEL course
- 6. Fundamentals of manufacturing processes https://onlinecourses.nptel.ac.in/noc22_me71/preview Swayam Course

				MEN11	1601/MEN	12601 Eng	ineeri	ng G	raphics			
Designation		:	Compulse	Compulsory								
Pre-requisite	es	•••	Nil									
Credit and Contact hrs		:	1(L) - 0(T	(L) - 0(T) - 2(P) - 2(Cr)								
Assessment Methods		••	End Sem Mid Sem	Theory Part:Practical Part:End Semester Exam: 40%End Semester Exam: 15%Aid Semester Exam: 20%Teacher Assessment: 15%Ceacher Assessment: 10%Teacher Assessment: 15%								
Course Outcomes		•	1. Und usin 2. Und	g computer lerstand the	importance aided draf isometric a	e and princ ting softwa and orthogr	re. aphic j	proje	ineering dra ctions of di aponents.	0.		e and
Modes of Delivery		:	Talk and	3. Create assembly drawing of simple machine components. Talk and chalk, Power point presentations, and practical etc.								
Mapping of	cours	e o	utcomes wi	ith program	outcomes							-
Course outcome	PO	1	PO2									
CO1												
CO2												
CO3												

1. Introduction to engineering drawing and its importance in real life design and manufacturing. Standards in drawing practice viz. types of lines, lettering, dimensioning, scales etc.

2. Introduction to isometric and orthographic projection. Orthographic projection of points, projection of lines, projection of planes, orthographic views of solids sketching of the same for conceptualization.

3. Introduction to computer aided drafting software and hands on practice of orthographic views of solid objects.

4. Sectional views of solid objects and hands on practice of sectional views of solid objects using computer aided drafting software.

 Introduction to temporary fasteners (e.g. screwed fasteners, keys, cotters etc.) Details of screwed fasteners (e.g. bolt, nut, stud, screw etc), terminology of threads, types (e.g. V, square, acme, single/multi start, left/right-handed etc). Assembly drawing of nut-bolt using computer aided drafting software.

Text Books:

1 Engineering Drawing Jolhe D. A. Tata McGraw Hill Education

References books

- 1. Engineering Drawing Basant Agrawal, C. M. Agrawal Tata McGraw Hill Education.
- 2. Machine Drawing K L Narayana, P. Kannaiah, K. Venketa Reddy New Age International publishers
- 3. Machine Drawing includes AutoCAD Ajeet Singh Tata McGraw Hill Publishing Company Ltd.

4. Elementary Engineering Drawing Bhatt ND Charotar Publishing.

IDN11600 Introduction to Environment and Ecology									
Designation	:	Compulsory							
Pre-requisites	:	Nil							
Credit and Contact hrs	:	2(L) - 0(T) - 0(P) - 2(Cr)							
Assessment Methods	Theory Examination: (Scheme) End Semester Exam: 50 marks : Mid Semester Exam: 25 marks Teacher Assessment: 25 marks								
Course Outcomes	:	 The successful student will learn: This course enables the students to become conversant with the structural and functional attributes of ecosystem and environment. Moreover, the students will understand the impact of climate change and pollution on its resources including biodiversity. 							
Modes of Delivery	:	Talk and chalk, Power point presentations, and practical etc.							
Mapping of cours	se oi	atcomes with program outcomes							
Unit-1 Introduction Biotransformation wastewater treatm Unit-2 Environment mitigation measu goals (SDG). Env Unit-3 Current er climate change. C Technological int	Mapping of course outcomes with program outcomes Syllabus Unit-1 Introduction to environmental science. Ecology, biodiversity and conservation. Biomagnification and Biotransformation. Bioremediation and phytoremediation. Biosorption and bioaccumulation. Biological wastewater treatment. Bioenergy. Need for public awareness. Unit-2 Environmental pollution: sources, causes and effects. Environmental monitoring (EMP) and EIA. Control/ mitigation measure for water, soil and air pollution. Solid waste management. Sustainable development goals (SDG). Environmental laws/ Acts. Unit-3 Current environmental issues of major concerns - acid rain, ozone layer depletion, global warming and climate change. Carbon ecology footprint and reduction. Case studies highlighting the impacts on society.								
References books									
1. A Basic Course in Environmental Studies. Deswal. Pub. Dhanpat Rai Sons. 2013									
2. Environmental Studies. E. Bharucha. Pub. University Press. 2018									
		tal Engineering. Peavy et.al. Pub. McGraw Hill. 2013							
4. A Text I	Bool	k of Environmental Engg. Venugpal Rao. Pub. PHI learning. 2012							

Semester-II

				MA	N12106 En	gineering	Mathemati	cs-II				
Designation	1	:	Compulse	ory		<u> </u>						
Pre-requisit	es	:	Mathema	tics – I								
Credit and Contact hrs		:	3(L) - 0(1	3(L) - 0(T) - 0(P) - 3(Cr)								
Assessment Methods	ļ	:	Theory H	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks								
Course Outcomes		:	 This u as vec equati Studer diagor The co engine This u which Develo differe The st 	 Teacher Assessment: 25 marks The successful student will learn: This unit is designed to make students familiar with the basic concepts of linear algebra, such as vector spaces, basis, dimension, linear transformation, solvability of a system of linear equations. Students will learn basic concepts like eigenvalues, eigenvector, quadratic form, and diagonalization, which are fundamental concepts in many engineering problems. The course provides a basic understanding of Laplace transformation to address the engineering problems governed by ordinary and partial differential equations. This unit provides fundamental knowledge about the Fourier series and Fourier transforms, which are fundamental concepts for solving boundary value problems and signal processing. Development of the basic understanding and solution methods for the linear/nonlinear partial differential equations which arises in the modelling of engineering/physical problems. 								
Modes of Delivery		:		chalk, Pow	1 1	esentations	etc.					
Mapping of	cours	e o	utcomes wi	ith program	outcomes	r	1	r	1	1	1	
Course outcome	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	2		2	1	1	1	-	-	-	-	1	
CO2	2		2	2 1 1 1 1								
CO3	3		3 1 2 1 1									
CO4	3	3 3 1 2 1 1								1		
CO5	3		2 2 1 1 1									
CO6	3		3	2	2	1	-	-	-	-	1	
Syllabus		_										

<u>Syllabus</u>

Linear Algebra:

Vector spaces, Subspaces, Linear dependence and independence, Basis and dimension, Dimension theorem. Linear Transformation, Rank – Nulity Theorem (Statement only), Computation of Rank and nullity of LT, Solution of linear simultaneous algebraic equations

Eigenvalues and Eigenvectors:

Eigenvalues and Eigenvectors, Cayley-Hamilton theorem, Application of Eigenvalues and Eigen-vectors, Quadratic form, Diagonalization, Canonical forms.

Laplace Transform:

Laplace transformation and its properties, Unit – step, Impulse and Periodic functions, Error Function.Inverse Laplace Transform, Convolution Theorem, Evaluation of Integral by Laplace Transform, Application of Laplace transform to solution of ODE& PDE.

Fourier Series & Fourier Transform:

Fourier series, Convergence of Fourier Series, Half range series. Fourier Integral, Fourier sine and Cosine Integral, Complex form of Fourier Integral. Fourier Transform, Fourier Sine and Cosine Transform, Finite sine and cosine transform, Convolution theorem, Application of Fourier Transform to boundary value problems.

Partial Differential Equation:

First order PDE, Formation of PDE, Classification of solution: Complete, General and Particular solution, Lagrange's linear PDE, Non-Linear First Order PDE, Some Standard form -I, II, III, IV. Charpit's method.Higher Order Homogeneous linear PDE with constant coefficients, C. F. & P.I, Non-homogeneous PDE with constant coefficients, C. F. & P.I.

Application of Partial Differential Equation:

Classification of Linear PDE of second order: Elliptic, Parabolic and Hyperbolic, Solution of separation of variables. Interior and Exterior BVP : Heat and Wave equation, Laplace Equation

Text Books:

1. R.K. Jain & S. R. K. Iyenger, Advanced Engineering Mathematics, 5th edition, 2016, Narosa Pub.

- 2. B.S. Grewal, Higher Engineering Mathematics, 44nd edition, **2018**, Khanna Publishers. **Reference Books and Online Source:**
- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, 2015, John Wiley & Sons.
- 2. Qazi Zameeruddin & Surjeet Singh, Modern Algebra, 9th edition 2021, S Chand Publication
- 3. Online Source: NPTEL.

					is Metallu	rgical The	rmodynan	nics and K	inetics		
Designation		:	Compulso								
Pre-requisite	es	:	Phase dia	grams							
Credit and			3(1) 1(7	(1) - 0(P) - 1	$\Lambda(\mathbf{Cr})$						
Contact hrs		·	3(L) - 1(1	(1) - 0(1) - 1	4(CI)						
Assessment			Theory E	Examinatio	on: (Schem	e) End Ser	nester Exa	m: 50 mark	S		
Methods		:				Mid Ser	mester Exa	m: 25 marl	KS .		
Methous						Teacher	Assessmen	nt: 25 mark	S		
			The succ	essful stud	ent will lea	arn:					
Course			1. To identify thermally activated processes in materials and metallurgy.								
Outcomes		:	2. To uno	derstand the	ermal prop	erties of ma	aterials.				
Outcomes			3. To de	sign and o	develop th	ermodynar	nics of Ce	eramics, P	olymers an	d Compos	ites durin
			synthe	sis							
Modes of				1 11 D	• ,	•	1 4				
Delivery		:	Talk and	chalk, Pow	er point pr	esentations	, and pract	ical etc.			
Mapping of	cours	e oi	itcomes wi	th program	outcomes						
Course							DOC	D 07	DOO	DOG	DO 10
outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
Syllabus											
Clausius-Cla applications Thermodyn	apeyro in arc a mic	ntro on eas Re	py, free en equation, of materials actions an	nergy funct importance s technolog d Rate of	ions and the e of ther gy, industri Processes:	heir relatio modynamic al and proc Thermally	nships, Gil cs in mat ess metallu activated	bbs-Helmh erials scie 1rgy, related processes i	d calculatio n materials	ns, Maxwe ations and n. , stability o	Il relation examples of material
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion: I diffusion, Aj Thermal Pr conduction, Thermodyn interstitial a	apeyro in are amic hergy, ixing lastic Diffus pplica oper therm amic nd su	ntro on eas Re fur beh ion tion ties s of bsti	py, free en equation, of materials actions an tential barn actions, ide naviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im	ergy funct importanc s technolog d Rate of fier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio	tions and the e of ther gy, industri Processes: nius equation -ideal solut ding), App and non-ste fic heat - D ing point. Ons: Therm	heir relatio modynamic al and proce Thermally on, rate of titions, relat plications to eady state d bebye and o nodynamics	nships, Gil cs in mat ess metallu activated reactions- ed calculat heat treatu iffusion, Fa ther model s of lattice	bbs-Helmh erials scie irgy, related processes i first order, ions, therm ments. actors that i ls, heat cap defects. er	oltz relation ence-illustra d calculatio n materials second orce nodynamics influence di pacity, therm nthalpy of	ns, Maxwe attions and n. , stability o ler etc, intr is involved affusion, La nal expansi formation	Il relation examples of materials oduction t with rate of w's of on, therma
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion: I diffusion, Aj Thermal Pr conduction, Thermodyn interstitial a minimize the	apeyro in are a amic nergy, ixing lastic Diffus pplica oper therm aamic nd su e dislo	ntro on Reas , po fur bel ion tion tios nal s s of bsti	py, free en equation, of materials actions an tential barn actions, ide naviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im-	ergy funct importanc s technolog d Rate of cier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatic npurity, Fre	tions and the e of ther gy, industri Processes: nius equation- ideal solution ding), App and non-ste fic heat - D ing point. Ons: Therm enkel's def	heir relatio modynamic al and proce Thermally on, rate of titions, relat plications to eady state d bebye and o nodynamics fects, calcu	nships, Gil cs in mat ess metallu activated reactions- ed calculat heat treath iffusion, Fa ther model s of lattice lations on	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i ls, heat cap defects. er all these to	oltz relation ence-illustra d calculatio n materials second orch nodynamics influence di acity, therm nthalpy of opics, therm	ns, Maxwe attions and n. , stability of ler etc, intra- involved affusion, La nal expansion formation nal energy	Il relation example of material oduction to with rate of tw's of on, therm of vacancy required to
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion: I diffusion, Ap Thermal Pr conduction, Thermodyn interstitial a minimize the Thermodyn	apeyro in are a amic nergy, ixing lastic Diffus pplica oper therm amic nd su e dislo amic	ntro on Re , po fur beh ion ties nal s s of bsti ocat s of	py, free en equation, of materials actions an tential barr actions, ide haviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im- tions. Ceramics	ergy funct importanc s technolog d Rate of tier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio npurity, Fre , Polymers	tions and the e of ther gy, industri Processes: nius equation- i-ideal solution ding), App and non-ste fic heat - D ing point. Ons: Therm enkel's def	heir relatio modynamic al and proce Thermally on, rate of tions, relat blications to eady state d bebye and o modynamic: fects, calcu posites: Ph	nships, Gil cs in mat ess metallu activated reactions- ed calculat heat treatu iffusion, Fa ther model s of lattice lations on ase change	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i ls, heat cap defects. en all these to es in Ceram	oltz relation ence-illustra d calculation n materials second orch nodynamics influence di acity, therm nthalpy of ppics, therm ics, glass tra	ns, Maxwe attions and n. , stability of ler etc, intra- involved affusion, La nal expansion formation nal energy	Il relation example of material oduction with rate of with rate of with rate of on, therm of vacancy required f
Clausius-Cla applications Thermodym activation er solutions, m loading (ane Diffusion: I diffusion, Aj Thermal Pr conduction, Thermodym interstitial a minimize the Thermodym changes in p	apeyro in arc amic nergy, ixing lastic Diffus pplica oper therm amic amic amic olym	ntro on eas f Re fur bel ion ation ation ties s of bsti ocat s of ers	py, free en equation, of materials actions an tential barr actions, ide haviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im- tions. Ceramics	ergy funct importanc s technolog d Rate of tier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio npurity, Fre , Polymers	tions and the e of ther gy, industri Processes: nius equation- i-ideal solution ding), App and non-ste fic heat - D ing point. Ons: Therm enkel's def	heir relatio modynamic al and proce Thermally on, rate of tions, relat blications to eady state d bebye and o modynamic: fects, calcu posites: Ph	nships, Gil cs in mat ess metallu activated reactions- ed calculat heat treatu iffusion, Fa ther model s of lattice lations on ase change	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i ls, heat cap defects. en all these to es in Ceram	oltz relation ence-illustra d calculation n materials second orch nodynamics influence di acity, therm nthalpy of ppics, therm ics, glass tra	ns, Maxwe attions and n. , stability of ler etc, intra- involved affusion, La nal expansion formation nal energy	Il relation example of material oduction with rate with rate w's of on, therm of vacance required
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion: I diffusion, Ap Thermal Pr conduction, Thermodyn interstitial a minimize the Thermodyn changes in p References 1. Gaskell 2. Jere H. I of struct	apeyro in are amic hergy, ixing lastic Diffus pplica oper therm amic amic amic book David Broph ture',	ntro on ease for fur beh ion ties nation ties s of ers s of ers s d R, y, F Wil	py, free en equation, of materials actions an tential barr actions, ide naviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional in ions. Ceramics and amorph , 'Introduct Robert M. R ley Eastern	ergy funct importanc s technolog d Rate of fier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio npurity, Fre , Polymers hous mater ion to Meta cose and Jo Pvt. Ltd., 1	tions and the e of ther gy, industri Processes: nius equation- i-ideal solut ding), App and non-ste fic heat - D ing point. Dis: Therm enkel's def s and Comp <u>ials, phase</u> allurgical The hn Wulff, ' N.Delhi, la	heir relatio modynamic al and proce Thermally on, rate of titions, relat plications to eady state d bebye and o nodynamics fects, calcu posites: Ph <u>changes in</u> Thermodyn. The Structu test edition	nships, Gil cs in mat ess metallu activated reactions- ed calculat heat treatu iffusion, Fa ther model s of lattice lations on ase change <u>composite</u> amics', Mc ure and Pro	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i ls, heat cap defects. er all these to s in Ceram s, metallic eGraw Hill, perties of M	oltz relation ence-illustra d calculatio n materials second orch nodynamics influence di acity, therm nthalpy of opics, therm ics, glass tra glasses.	ns, Maxwe ttions and n. , stability of ler etc, intra- involved iffusion, La nal expansi formation nal energy ansition, gl on. ol II; Therm	Il relation example of material oduction with rate with rate w's of on, therm of vacance required asses, phase nodynamic
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion: I diffusion, Ap Thermal Pr conduction, Thermodyn interstitial a minimize the Thermodyn changes in p References 1. Gaskell 2. Jere H. I of struct 3. Tupkary onwards	apeyra in are amic nergy, ixing lastic Diffus pplica oper therm amic amic olym books David Broph ture', 7 R. I s editi	ntro on eas , po fur beh ion tion ties nal s s of bsti ocat s of ers <u>s</u> d R, y, F Wil H., on.	py, free en equation, of materials actions an tential barr actions, ide naviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im- tions. Ceramics and amorph , 'Introduct Cobert M. R ley Eastern 'Introducti	ergy funct importance is technolog d Rate of fier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio npurity, Free , Polymers hous mater tion to Meta cose and Jo Pvt. Ltd., I on to Meta	tions and the e of ther gy, industri Processes: nius equation- ind equation- ind non-ste fic heat - D ing point. Ons: Therm enkel's define and Comp ials, phase allurgical Then Wulff, ' N.Delhi, la allurgical T	heir relatio modynamic al and proce Thermally on, rate of titions, relat olications to eady state d bebye and o nodynamic: fects, calcu posites: Ph <u>changes in</u> The Structu test edition Thermodyn	nships, Gil cs in mat ess metallu vactivated reactions- ed calculat o heat treatu- iffusion, Fa other model s of lattice lations on ase change <u>composite</u> amics', Mc ure and Pro	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i als, heat cap defects. en all these to es in Ceram es, metallic cGraw Hill, perties of M atest editio	oltz relation ence-illustra d calculation n materials second orch nodynamics influence di acity, therm nthalpy of ppics, therm ics, glass tra glasses. latest edition faterials, Vo n., Tu Pub	ns, Maxwe ttions and n. , stability of ler etc, intri- involved iffusion, La nal expansi formation nal energy ansition, gl on. ol II; Therm lishers, Na	Il relation example of material oduction with rate of with rate of with rate of on, therm of vacance required asses, phase nodynamic agpur, 199
Clausius-Cla applications Thermodyn activation er solutions, m loading (ane Diffusion : E diffusion, Aj Thermal Pr conduction, Thermodyn interstitial a minimize the Thermodyn changes in p References 1. Gaskell 2. Jere H. H of struct 3. Tupkary onwards 4. Upadhy Pergamo 5. Kenneth	apeyra in arc amic hergy, ixing lastic Diffus pplica oper therm amic amic amic olym books David Broph ture', 7 R. 1 s editii aya C on Pre M. F	ntro on ease f Re for bel ion tion ties s of bsti ocat s of ers s d R, y, F Wil H., on. S ess, Ralls	py, free en equation, of materials actions an tential barr actions, ide haviour / ac mechanism as of Diffus of Materi stress and s f Defects / tutional im- tions. Ceramics and amorph , 'Introduct Robert M. R ley Eastern 'Introducti S. and R. 1 1977 onwa	ergy funct importance is technolog d Rate of fier, Arrher al and non liabatic loa ns, steady a sion. als: Specif hock, melti Dislocatio purity, Fre , Polymers hous mater ion to Meta cose and Joi Pvt. Ltd., I on to Meta K. Dube, ards.	tions and the e of ther gy, industri Processes: nius equation- i-ideal solution ding), App and non-ste ic heat - D ing point. Drins: Therm enkel's def s and Com <u>ials, phase</u> allurgical The hn Wulff, ' N.Delhi, la allurgical T 'Problems	heir relatio modynamic al and proce Thermally on, rate of titions, relat blications to eady state d bebye and o modynamics fects, calcu posites: Ph <u>changes in</u> Thermodyn The Structu test edition Thermodyn in Metallu	nships, Gil cs in mat ess metallu vactivated reactions- ed calculat o heat treath iffusion, Fa ther model s of lattice lations on ase change composite amics', Mo ure and Pro hamics', La	bbs-Helmh erials scie irgy, related processes i first order, ions, thern ments. actors that i ls, heat cap defects. er all these to es in Ceram es, metallic cGraw Hill, perties of M atest editio	oltz relation ence-illustra d calculatio n materials second orch nodynamics influence di acity, therm nthalpy of opics, therm ics, glass tra glasses.	ns, Maxwe ttions and n. , stability of ler etc, intri- involved iffusion, La nal expansi- formation nal energy ansition, gl on. ol II; Therm lishers, Na netics', La	Il relation example of material oduction with rate with rate with rate of was of on, therm of vacanc required asses, pha nodynamic agpur, 199 test editio

- G. Khachaturyan, 'Theory of Structural Transformation in Solids', Wiley Interscience Press.
 M. Alper, 'Phase Diagrams: Material Science and Technology', Vol 6, Academic Press.
 Alok Gupta and Chatterjee, 'Thermodynamics and Phase Equilibrium'

Designation	1									
	1:	Compulse								
Pre-requisites	:	Engineeri	ng Mechar	nics, Mathe	matics-I					
Credit and	:	3(L) - 0(T	(P) - 0(P) - 0(P)	3(Cr)						
Contact hrs	-									
Assessment		Theory E	xaminatio	on: (Schem	e) End Sen					
Methods	:						m: 25 mark			
						Assessmen	t: 25 marks			
				ent will lea						
					wledge of f			drostatic la	aws and app	plication of
Course					y equation i					
Outcomes	:	: 2. To develop understanding about Dimensional Analysis, different types of flows and losses in a flow system								
o ate offices		flow system.								
	3. To learn the importance of flow measurements and its applications in Industries.4. To develop basic knowledge of hydraulic machines and its applications.									
		4. To dev	elop basic	knowledge	e of hydraul	ic machine	es and its ap	plications.		
Modes of		Talk and a	chalk Pow	er noint pre	esentations,	and practi	cal etc			
Delivery	·				contations,	and practi	cal etc.			
Mapping of cours	se o	atcomes wi	th program	outcomes		1	-	1		
Course PO1	I	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome		102	105	104	105	100	107	100	10)	1010
CO1 3		2	1	1	1	-	-	-	-	-
CO2 3		2	1	1	2	-	-	-	-	-
CO3 -		-	2	-	2	-	-	-	-	-
pressure, Kinema		of Fluid							ed surfaces streamline,	
pathline, continui Dynamics Of Flu Bernoulli's equat Buckingham's Pi dynamic similarit Laminar and Tu to turbulent flow, viscosity, Prandtl resistance to flow and pipe network. Hydrodynamic momentum thick application of mo drag on a sphere, Measurement Te nozzle, and bend turbines and pum	atics ty e id 1 ion the y, r r br typ l's , m a some 2D echn me ps,	quation, str Flow and D and its app orem, impo- nodel studie lent Flows es of turbu- nixing leng inor losses, undary La s, boundary ntum equati cylinder an niques & Li ter, rotame	flow: stead ream functi Dimensional lications, mortant dime es, Hydraul Equation lent flow, i gth theory pipe in ser yer: Intro y layer ov ion, turbule ad aerofoil, ntroductio	liness, unif on and velo al Analysis nomentum nsionless n lic similitud of motion f sotropic an , velocity ies and par duction wi er a flat p ent boundar Magnus ef n to Hydra uction to H	formity, rot ocity potent : Euler's Ec equation ar numbers and de. for laminar id homogen distribution rallel, power ith a histor late, Prand y layer, lam fect. aulic Mach Lydroelectri	ational and ial, applica quation of r ad its applie it their physical flow throug ous turbule in turbule r transmiss rical backg the boundar ninar sub-la ines : Flow c power st	d irrotation ations of po notion alon cation to pi sical signifi gh pipes, St ence, scale ent flow ov ion through ground, bou y layer eq ayer, separa measureme ation and i	al flows, s tential flow g a streaml pe bends. I icance, geo okes law, t and intensi ver smooth a pipe, the undary lay uation, lan ition and its ent by Pitot	streamline, v. line and its = Dimensiona ometric, kin ransition fr ity of turbul n and roug ree reservoi ver, displac ninar boum s control, du	streakline integration il Analysis ematic and om lamina lence, edd h surfaces r problem ement and dary layer rag and lift
pathline, continui Dynamics Of Flu Bernoulli's equat Buckingham's Pi dynamic similarit Laminar and Tu to turbulent flow, viscosity, Prandtl resistance to flow and pipe network Hydrodynamic momentum thick application of mo drag on a sphere, Measurement Te nozzle, and bend turbines and pum <u>References book</u> 1. Munson, You I. Hochstein, 2. Fox, R.W., M 3. Som, S.K. and	atics ty e id 1 ion the ty, r rbu typ l's Bou nes Dome 2D echi me ps, S up Will [cD] d B	quation, str Flow and D and its app orem, impo- nodel studie lent Flows es of turbu- nixing leng- nor losses, indary La s, boundary num equati- cylinder an niques & In ter, rotame <u>similarity la</u> and Okiishi ey. onald, A.T. swas G, In	flow: stead ream functi Dimensiona lications, n ortant dime es, Hydraul : Equation lent flow, i gth theory pipe in ser yer: Intro y layer ov ion, turbule d aerofoil, ntroductio eter, Introductio ter, Introductio troduction	liness, unif on and velo al Analysis nomentum nsionless n lic similitud of motion f sotropic an , velocity ies and par duction wi er a flat p ent boundar Magnus ef n to Hydra uction to H ecific speed entals of Fl ion to Fluid	formity, rot ocity potent : Euler's Ec equation ar numbers and de. for laminar id homogen distribution allel, power ith a histor late, Prand y layer, lam fect. aulic Mach lydroelectri l, efficiency uid Mechar l Mechanics &	ational and ial, applica juation of r id its applie their physical flow throug ous turbuld in turbuld r transmiss rical backg theorem in turbuld r transmiss rical backg r transmiss r turbuld r turbul	d irrotation ations of po notion alon cation to pi sical signifi gh pipes, St ence, scale ent flow or ion through ground, bor y layer eq ayer, separa measureme ation and i n. Philip M. C on, Wiley In	al flows, s tential flow g a streaml pe bends. I icance, geo okes law, t and intensi ver smooth a pipe, the undary lay uation, lan tion and its ent by Pitot ts compon Gerhart, An	streamline, v. line and its = Dimensiona ometric, kin ransition fruity of turbul n and roug ree reservoir ver, displac ninar boun s control, du t tube, orific ents, Class udrew L. Ge	streakline integration il Analysis ematic and om lamina lence, eddy h surfaces r problem ement and dary layer rag and lift ce, Venturi ification o
I. Hochstein, 2. Fox, R.W., M	atics ty e id in the y, r rbu typ l's Bou nes Bou 2D ech me ps, is ung Will (cD d B X., 1 Me ., F	quation, str Flow and D and its app orem, impo- nodel studie lent Flows es of turbu- nixing leng inor losses, undary La s, boundary ntum equati cylinder an niques & In ter, rotame similarity la and Okiishi ey. onald, A.T. swas G, In Fluid Mecha chanics of luid Mecha	flow: stead eam functi Dimensiona lications, n ortant dime es, Hydraul : Equation lent flow, i gth theory pipe in ser yer: Intro y layer ov ion, turbule d aerofoil, ntroductio eter, Introductio ter, Introductio troduction anics, PHI Fluids, Mc nics and M	liness, unif on and velo al Analysis nomentum nsionless n lic similitud of motion f sotropic an , velocity ies and par duction wi er a flat p ent boundar Magnus ef n to Hydra uction to H ecific speed entals of Fl ion to Fluid of Fluid M Learning, f Graw Hill, [achinery, 7]	formity, rot ocity potent : Euler's Ec equation ar numbers and de. for laminar id homogen distribution rallel, power ith a histor late, Prand y layer, lam fect. aulic Mach lydroelectri d, efficiency uid Mechanics echanics & New Delhi. Internation FMH, New	ational and ial, applica quation of r id its applie flow throug ous turbule in turbule r transmiss rical backg the boundar inar sub-la ines: Flow c power st 7, cavitatio hics, 9e by s, 7th editic Fluid Mac al Students Delhi.	d irrotation ations of po notion alon cation to pi sical signifi gh pipes, St ence, scale ent flow ov ion through ground, bou y layer eq ayer, separa measureme ation and i n. Philip M. C on, Wiley In hines, TMH s Edition.	al flows, s tential flow g a streaml pe bends. I icance, geo okes law, t and intensi ver smooth a pipe, the undary lay uation, lan tion and its ent by Pitot ts compon Gerhart, An ndia. I, New De	streamline, v. line and its : Dimensiona ometric, kin ransition fr ity of turbul n and roug ree reservoir ver, displac ninar boun s control, du t tube, orific ents, Class: adrew L. Ge	streakline integration il Analysis ematic and om lamina ence, eddy h surfaces r problem ement and dary layer rag and lift ce, Venturi ification o

Semester-III

f microstructures of plain carbon steel and cast iron: non-equ

Ternary phase diagrams: Gibbs triangle, isothermal and vertical sections, Polythermal projections, two-phase equilibrium Concept of the lines, rules for construction of tie lines, three phase equilibrium, concept of tie-triangle, four phase equilibria.

Crystal Growth: Formation of crystals, theories of crystal growth, homogeneous and heterogeneous nucleation/crystal growth; criteria for equilibria in crystal growth; solid solubility; kinetics of growth - nucleation, diffusion and surface migration, dislocation; motion of dislocation, dislocation density; super-cooling; growth of single crystal of high perfection, whiskers and whiskers growth.

Phase Transformations: Classification of phase transformations, order of transformation, Gibbs rule and applications, rapid solidification and its methods, glass transformation, alloy solidification - cellular, dendritic, eutectic, peritectic, eutectoid; boundary transformations; recrystallization, grain growth; effect of alloying elements; strengthening mechanisms, shape memory effects/alloys, thermodynamics and metallography / polymorphism.

Heat Treatment Processes: Transformation rate effects and TTT diagrams. Microstructure and property changes in ironcarbon system, Iron-Carbon (Fe-C or Fe-Fe3C) Diagram

List of experiments:

- 1. Concepts in Phase Transformations & Heat Treatment.
- 2. Annealing & Normalizing.
- 3. Spherodising & Hardening.
- 4. Nucleation of Ice from Water: A Modelling Approach.
- 5. Study of nucleation and growth in Eutectoid steel
- 6. Jominy End Quench Test.
- 7. Carburization of Steel.
- 8. Precipitation Hardening.
- 9. Differential Scanning Calorimetry

- 1. Phase Transformations in Metals and Alloys, Porter, Easterling; 3ed ed, CRC Press, 1991
- 2. F. C. Campbell, Phase Diagrams: Understanding the Basics, ASM International, 2012.
- D R F West, N Saunders, Ternary Phase Diagrams in Materials Science, Anebooks Woodhead 2006

					MN13101	Mechanics	of Ma	ateria	ls			
Designation		:	Compulse									
Pre-requisit	es	:	Engineeri	ing Mechar	nics							
Credit and Contact hrs		:	3(L) - 0(1	$(\Gamma) - 2(P) - 4$	4(Cr)							
Assessment Methods		:	Mid Sem	ester Exam ester Exam	: 20%			End	tical Part: Semester I her Assess			
			The succ 1. Unde	Teacher Assessment: 10% The successful student will learn: 1. Understand the concept of internal forces and moments, stress, strain, deformations in members subjected to axial banding and torsional loads								
Course Outcomes		:	 Under the providence of the provide	 Condensated the concepts of internal forces and information, backs, brand, deformations in members subjected to axial, bending and torsional loads Understand the concepts of stress and strain at a point, and principal stress and strain to solve the problems of engineering elasticity Apply the concepts to calculate stress, strain, and displacements in mechanical structures and components containing the fundamental elements such as beams, shaft, shells and springs Analyze the mechanical engineering structures and components for safer mechanical design by considering appropriate failure criteria and the design requirements. 								
Modes of Delivery		:		chalk, Pow		esentations	and p	ractica	al etc.			
Mapping of	course	e o	utcomes wi	ith program	outcomes							
Course	PO1		PO2	PO3	PO4	PO5	PO6	,	PO7	PO8	PO9	PO10
outcome CO1					N							
CO2	√				N				$\frac{1}{\sqrt{2}}$			
CO3	v		v	v	v				$\sqrt{1}$		v	
CO4									1			
Analysis of Energy, Stat Biaxial Stre Strain Trans Bending and Stresses in b Torsion of S Shaft, Coml Deflections Macaulay's Columns an	tically ss and sforma d Shea beams, Shaft, S bined I of Bea Metho d Theo	Ind Str tio r S Co Spr Loa ams od, orie	determinate rain: Stress n, Strain M tresses: Sho omposite B ings, and P idings, Thin s: Equation Moment-A es of Failur	e Problems, at a Point, leasuremen ear Force a eams ressure Ves nWalled Sh of Elastic area Method	Thermal H Stress Tran ts, Principa nd Bending ssels: Torsi cells, and S Curve, Mer d, Castiglia	Effects, Imp nsformation al Stresses a g Moment I tion of Circu prings (Ope thods for D uno's Theor	act Lo a, Anal nd Str Diagran Ilar Sh en and etermi em	ading. lysis of ain ms, Pu aft, Pc Closed ning D	f Strain, S re Bendin ower Trans d Coils) Deflections	train-Disp ng, Norma smitted by s: Double	blacement R l Stress and v a Shaft, Co Integration,	elations, Shear ompound
 Structu To per strain o Stress To pre 	riment nen pr ral exa form t curve. (d) Pe edict cr	ts: epa am he Us rce rce	ration by c ination. Tensile Tensile Tensile stress s ing stress s ntage Elon o characteri	st on Unive strain curve gation (e) F istics of giv	ersal Testin find out th Percent Rec en materia	g Machine e following luction in A ls by plottin	(UTM g: (a) Y area (f) ng stra) for N /ield S) Modu in vs. 1	Aild Steel tress (b) U ulus of Ela time curve	Specimen Jltimate S asticity.	aparative mi and draw t tress (c) Bre erent loading	he stress eaking
5. To per Using	form 7 Torqu	Гог e-Т	sion Test o	find the fo	Festing Ma	chine for N	lild Ste	eel Spe	ecimen an		orque-Twist field point v	

- 6. Fabrication and mechanical testing of composite materials made by hand-layup technique in the laboratory.
- 7. To study the fatigue behavior of different materials.
- 8. To perform the Impact Test on Impact Testing Machines using (a) Charpy Test (b) Izod Test and find the Impact Strength of the material.
- 9. To perform the Beam Bending Test on Beam Bending Apparatus and find the value of Modulus of Elasticity by measurement of slope & deflection of the beam and draw Load Vs Deflection Curve.
- 10. To perform the Shear Test on Shear Testing Machine for Wooden Specimen and find the Maximum Shear Stress (parallel to grain) of the Wood.

- 1. Popov, E.P., Engineering Mechanics of Solids, 2 nd ed., Prentice Hall of India, New Delhi, 2000.
- 2. Beer, F.P., Johnston, E.R. and DeWolf, J.T., Mechanics of Materials, 3rd ed., Tata McGraw-Hill.
- 3. Timoshenko, S.P. and Young, D.H., Elements of Strength of Materials, McGraw-Hill.
- 4. Irving H. Shames, Introduction to Solid Mechanics, 2nd ed., Prentice Hall of India.
- 5. Crandall, S.H., Dahl, N.C. and Lardner, T.J., Introduction to Mechanics of Solids, McGraw-Hill

AMN13112 Extractive Metallurgy								
Designation	:	: Compulsory						
Pre-requisites	:	Themistry and Introduction to Materials Engineering						
Credit and Contact hrs	:	3(L) - 0(T) - 0(P) - 3(Cr)						
Assessment Methods	:	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks						

<u>Syllabus</u>

Principles of metals extraction: Thermodynamic principles, homogeneous and heterogeneous

reactions, Ellingham diagram, kinetic principles, principles of electro-chemistry

General methods of extraction: Pyrometallurgy - calcination, roasting and smelting, Hydrometallurgy

leaching, solvent extraction, ion exchange, precipitation, and electrometallurgy – electrolysis and electro refining)
 General methods of refining: Basic approaches, preparation of pure compounds, purification of crude metal produced in bulk

Brief history of iron and steel making, Raw Materials for Iron Making, Burden Preparation from raw materials, Blast Furnace design and operations, Physical-Thermal-Chemical Processes in a Blast Furnace, Alternative Routes of Iron Production, Steelmaking - basic oxygen and electric arc furnace processes - principles, operation and design aspects. Deoxidation, ladle refining processes - VD, VOD and AOD processes - inclusions in steel.

Nonferrous metals in Indian history, uses of nonferrous metals, Sources of nonferrous metals

Extraction of metals from oxide sources: Basic approaches and special features of specific extraction

processes, extraction of metals such as magnesium, aluminum, tin and ferro-alloying elements, production of ferro alloys. Extraction of metals from Sulphide Ores: Pyro-metallurgy and hydrometallurgy of sulphides, production of metals such as copper, lead, zinc, nickel etc. Extraction of metals from Halides: Extraction of metals from halides: Production of halides and refining methods, Methods of extraction of metals such as titanium, rare earths, uranium, thorium, plutonium, beryllium, zirconium etc.

- 1. Ray, H.S., Sridhar, R. and Abraham, K.P. Extraction of nonferrous metals, Affiliated East West Press Pvt Ltd., New Delhi (2007)
- 2. Dennis, W.H., Extractive Metallurgy, Philosophical Library, New York (1965)
- 3. Tupkary, R. H., and V. R. Tupkary. "An Introduction to Modern Iron Making.", Khanna publishers (2004).
- 4. A. Ghosh and A. Chatterjee, Ironmaking and Steel making: Theory and Practice, Prentice Hall of India, New Delhi, 2008

				AMN13	113 Polyme	er Science	and Eng	ineering					
Designation		:	Compuls		· ·			<u> </u>					
Pre-requisite	es	:	Chemistr	у									
Credit and Contact hrs		:	4(L) - 0(Γ) – 0(P) –	4(Cr)								
Course			This cour	This course provides a sound knowledge in field of polymer science namely, polymer									
Objectives			synthesis	ynthesis, characterization, rheology, processing, testing and degradation process.									
			Theory P	heory Part: Practical Part:									
Assessment		:	End Sem	nd Semester Exam: 40% End Semester Exam: 15%									
Methods		•	Mid Sem	Aid Semester Exam: 20%Teacher Assessment: 15%									
			Teacher A	Assessment	: 10%								
Course Outcomes Modes of Delivery		:	 Une Det suit Che pro Une Der pro Der pro Une 	derstand the termine the table charac pose an app perty relati derstand flo monstrate the perties. derstand the	molecular v cterization t propriate ma on. ow behavior he plastic te	n of polyn weight and echnique. tterial for s of polymesting meth hanics of p	nerization l various pecific a er melt an od to eva polymer c	n and its van thermal tran pplication b nd various p aluate its mo composites	rious technions insitions of p pased on known processing t echanical, e and its fabre	oolymers us owledge of echniques. lectrical and	structure-		
Mapping of	cours	e out	comes with	nrogram (utcomes								
Course outcome	PC		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1													
CO2													
CO3	N		\sim										
CO4	N												
CO5				\sim									
CO6	N												
Syllabus													

Chemistry of Polymers: Monomers, functionality, degree of polymerizations, classification of polymers, polymerization methods and their kinetics, copolymerization, techniques for copolymerization, molecular weight, transition temperature and associated properties for polymers.

Polymer Characterization: Determination of number average, weight average, viscosity average and Z-average molecular weights, analysis of polymers using IR, XRD, thermal (DSC, DMTA, TGA), microscopic techniques.

Synthesis and Properties: Commodity and general-purpose thermoplastics, Engineering Plastics, Thermosetting polymers, Natural and synthetic rubbers, Thermoplastic elastomers and blends.

Polymer Rheology: Flow of Newtonian and non-Newtonian fluids, dependence of shear modulus on temperature, measurements of rheological parameters by capillary rotating, parallel plate, cone-plate rheometer; viscoelasticity-creep and stress relaxations, mechanical models, rubber curing in parallel plate viscometer, ODR and MDR.

Polymer Processing: Compression molding, transfer molding, injection molding, blow molding, reaction injection molding, extrusion, pultrusion, calendaring, rotational molding, thermoforming, two-roll mill and internal mixer.

Polymer Testing: Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness, tear, resilience, impact, toughness. Conductivity-thermal and electrical, dielectric constant, surface and volume resistivity, swelling, ageing resistance, environmental stress cracking resistance.

Polymer Composites: Classification of composites, Types of reinforcement, Macromechanics-Engineering constant, determination of strength and stiffness, Micromechanics of lamina, Classical lamination theory, Processing and testing of polymer composites.

References (books/Journals)

- 1. Polymer Science, Vasant R. Gowariker, N. V. Viswanathan & Jayadev Sreedhar.
- 2. Essentials of Polymer Science and Engineering, Paul C. Painter and Michael M. Coleman.
- 3. Plastics Engineering, R. J. Crawford, Pergamon Press.
- 4. Text Book of Polymer Science, Billmeyer, John Wiley & Sons.
- 5. Polymer Physics, Ulf W. Gedde, Chapman & Hall.
- 6. Principles of Composite Material Mechanics: R. F. Gibson
- 7. Mechanics of Composite Materials: R. M. Jones

			I	EEN****	[•] Basic Ele	ctrical and	Electr	onic Enginee	ring			
Designation	l	:	Compuls	ory								
Pre-requisite	es	:	None	one								
Credit and Contact hrs		:	2(L) - 0(L) - $0(T) - 2(P) - 3(Cr)$								
Assessment Methods		••	End Sem Mid Sem	heory Part: hd Semester Exam: 40% Fid Semester Exam: 20% eacher Assessment: 10% Practical Part: End Semester Exam: 15% Teacher Assessment: 15%								
Course Outcomes		:			dent will le tes the stud		a comp	rehensive exp	osure to elec	ctrical engin	neering.	
Modes of Delivery		:	Talk and	chalk, Pov	wer point p	resentation	s, and p	ractical etc.		<u> </u>	E.	
Mapping of	cours	e o	utcomes w	ith program	m outcomes	S						
Course outcome	PO1		PO2									
CO1												
CO2												
CO3							1					

Syllabus

DC Circuit Ohm's Law, Kirchhoff's Laws, Source Conversion, Star Delta transformation, Network Theorems - Superposition theorem, Thevenin's theorem, Norton's Theorem, Maximum Power Transfer Theorem

A.C. Circuit Sinusoidal AC voltage, Average value, R.M.S. value, form factor and peak factor of AC quantity, Concept of phasor, Power factor, impedance and admittance, Active, reactive and apparent power, analysis of R-L, R-C, R-L-C circuit, 3-phase AC Circuits: balanced and unbalanced supply and loads. Relationship between line and phase values for balanced star and delta connections. 3-phase Power measurements.

Electrical Machines Basics- construction, working and applications of transformer, DC machine, 3- phase induction motor and synchronous machine. Losses in electrical machines.

Introduction to Power System and Electrical Safety Basics of Power System (Generation, Transmission & Distributiongeneral layout). Electrical safety, domestic wiring & electrical measurements, Electrical lightning devices, Energy saving and star ratings, Basic principle of earthing.

Fundamental of Electronics: Basic Electronics - Construction, working and V-I characteristics of diodes. SCR and their applications. Transistors-(BJT, FET, MOSFET), Construction, working, type of configuration, and characteristics Digital-number system, logic gates, Karnaugh map

References books

- 1. Vincent Del Toro, "Electrical Engineering Fundamentals"
- 2. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second edition, PHI Learning, 2007.
- 3. Metha V.K, Rohit Metha, "Basic Electrical Engineering", Fifth edition, Chand. S & Co. 2012.
- 4. Kothari. D.P and Nagrath. I.J, "Basic Electrical Engineering", Second edition, Tata McGraw Hill, 2009.
- 5. Horowitz and Hill, "Art of Electronics", Cambridge University Press.

 Robert L. Boylestad and Louis Nashelsky "Electronic Devices and Circuit Theory" Tenth Edition, Pearson Education, 2013

				HSN1360	1 Manager	ment Conc	epts and A	Application				
Designation	l	•••	Compulse	ompulsory								
Pre-requisite	es	:	None	lone								
Credit and Contact hrs		:	3(L) - 0(1	(L) - O(T) - O(P) - 3(Cr)								
Assessment Methods		:	Theory F	Examinatio	on: (Schem	Mid Ser	nester Exa	m: 50 marks m: 25 marks nt: 25 marks	8			
Course Outcomes		:		essful stud			comprehe	nsive expos	ure to elect	rical engine	ering.	
Modes of Delivery		:	Talk and	chalk, Pow	er point pro	esentations	, and practi	ical etc.				
Mapping of	cours	e o	utcomes wi	ith program	outcomes							
Course outcome	PO1		PO2									
CO1												
CO2												

CO3 Syllabus

Unit I: Introduction and Development of Management Approaches

Concept and definition of management, Various ways to understand the management, function of Managers, managerial skill, Role of managers, Functional areas of management, Principles of management, Management Vs. Administration. Approaches to management, Classical theories, Management process approach, Bureaucracy Approach, Neo-classical approach, 20 | P a g e

Behavioral Sciences Approach, System Approach, Contingency Approach, Functions of Management.

Unit II: Planning

Nature and Definition of planning, Benefits of planning, Principles of planning, Kind of planning, steps in planning, Standing and single use planning, corporate planning and strategy formulation, Management by Objective, Management by Exception, Planning premises.

Unit III: Organizing

Concept and definition of Organization, Organization structure, Principles of organization, Form of organization, Departmentation, Formal and informal organization, Organizational culture and conflict management.

Unit IV: Direction

Concept and definition of direction, principles of direction, supervision and its significance, Leadership, Motivation, Communication and Coordination.

Unit V: Control and other Managerial Practices

Concept and definition of control, characteristics and principles of control, Control techniques, Budgetary Control, Change Management, Stress management, Emerging challenges in Management, Case Studies and Social Entrepreneurship.

- 1. VSP RAO-Managing Organization (EXCEL 1 EDITION)
- 2. Chaturvedi& Saxena Managing Organization (Himalaya Publication)
- 3. Stoner, Freeman & Gilbert Jr Management (Prentice Hall of India)
- 4. 4 Robbins-Organization Behavior -15 e Prentice Hall
- 5. Koontz Harold & Weihrich Heinz Essentials of management
- 6. T.N. Chhabra- Principles and Practices of Management, (Dhanpat Rai & Co.)
- 7. Luthans Fred Organizational Behaviour (Tata Mc Graw Hill)
- 8. Mc Shane L. Steven, Glinow Mary Ann Von & Sharma Radha R. Organizational Behaviour (Tata Mc Graw Hill)

Semester-IV

		AMN14102 Applied Mathematics an	d Computation					
Designation	:	Compulsory						
Pre-requisites	:	Mathematics						
Credit and Contact hrs	:	3(L) - 0(T) - 2(P) - 4(Cr)						
Assessment Methods	:	Theory Part: End Semester Exam: 40% Mid Semester Exam: 20% Teacher Assessment: 10%	Practical Part: End Semester Exam: 15% Teacher Assessment: 15%					
Course Outcomes		 To Identify the differences between "Exact r applications of these methods. To Develop knowledge of expressing a real- develop the skill of Mathematical Modelling To Identify and develop the skill to solve rea Problems, Initial Value & Boundary Value F Integration problems To develop skill of writing Flow Charts of re those into computer programming 	life problem in terms of mathematics i.e., to g. al life engineering problems e.g. Nonlinear Problems, Numerical Differentiation &					

Syllabus

Review of Elementary Engineering Mathematics: Error and its propagation, Solution of homogeneous and non-homogeneous equations; Power series.

Linear Algebra: Matrices and Linear Transformations, Operational Fundamentals of Linear Algebra, Systems of Linear Equations, Gauss Elimination Family of Methods, Special Systems and Special Methods, Numerical Aspects in Linear Systems, Eigenvalues and Eigenvectors, Diagonalization and Similarity Transformations, Jacobi and Givens Rotation Methods, Tri-diagonal Matrices, QR Decomposition Method, Eigenvalue Problem of General Matrices, Singular Value Decomposition, Direct and Iterative solvers.

Ordinary Differential Equations: Introduction to ordinary differential equations, homogeneous linear equations of second order, non-homogeneous linear equations of second order, free and forced oscillation problems, problems with variable coefficients, system of equations.

Partial Differential Equations (PDEs): Existence and uniqueness of differential equations, nature of solution, Hyperbolic, Parabolic and Elliptic PDEs, nonlinear PDEs.

Nonlinear Equations: Motivation, Open and bracketing method, Bisection, Fixed point, Newton's method, Secant and False position method, Rate of convergence, Merits and demerits of methods.

Numerical Integration: Motivation, Newton-Kotes method, Trapezoidal rule, Simpson's rule, Rhomberg integration, Gauss Quadrature.

Initial Value Problem: Motivation, Euler's method, Modified Euler method, Runge-Kutta methods, Adaptive integrations and multistep methods.

Boundary-value and Eigen-value Problem: Methods and Applications in Mechanics.

Statistical Computations: Frequency Chart, Regression Analysis, Least Square fit, Polynomial fit, Linear and Nonlinear Regression, Multiple Regression, Statistical Quality Control Methods.

Lab Exercises on Numerical Methods:

- 1. Numerical Linear Systems Gaussian Elimination method with pivoting Gauss-Seidal iterative methods, Power methods
- 2. Interpolation, Approximations and Quadratures Newton divided-difference and finite difference Interpolation, Composite Simpson and Composite Gaussian quadratures Cubic Spline Approximation.
- 3. Numerical methods for ordinary Differential Equations Euler's method. Fourth order Runge-Kutta Method, Adams-Bashforth Multi-Step method
- 4. Finite Difference Methods for BVP s Two-Point BVP, Elliptic Equations, Parabolic Equations, Hyperbolic Equation
- 5. Linear Programming Models Simplex Method, Big M method Bounded Variables method.
- 6. Integer Programming Models Cutting plane method, Branch and Bound method

- **1.** S. C. Chapra and R. P. Canale, Numerical Methods for Engineers.
- 2. R. W. Hamming, Numerical Methods for Scientists and Engineers (Dover Books on Mathematics).
- 3. Amos Gilat, Numerical Methods for Engineers and Scientists.
- 4. K.E. Atkinson, An Introduction to Numerical Analysis.
- 5. G. E. Golub and C.F. Van Loan, Matrix Computations.

AMN14109 Ceramic Engineering				
Designation	:	Compulsory		
Pre-requisites	:	Introduction to Materials Engineering		
Credit and Contact hrs	:	3(L) - 0(T) - 0(P) - 3(Cr)		
Assessment Methods	:	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks		

<u>Syllabus</u>

Introduction: Introduction, history, types and nature, conventional ceramics, applications, bonding, crystallography, etc. **Structure of Ceramics:** Lattice points, directions, and planes, basic structures, silicates, silica, glass, ceramic oxides, perovskite structure, etc.

Defects in Ceramics: Point defects, linear defects, planar (surface) defects, interfaces, and non-equilibrium structure. **Properties of Ceramics:** Mechanical properties, thermal properties, electrical properties, optical properties, magnetic

properties, failure modes in ceramics, property structure relationship.

Ceramic Phase Diagrams and Phase Equilibrium: Law of partial pressures, determination of phase diagrams, uniary (carbon, SiO₂), binary (NiO/CoO, MgO/CaO, MgO/MgAl₂O₄/Al₂O₃, BeO/Al₂O₃, MgO/TiO₂), ternary (MgO/Al₂O₃/SiO₂, CaO/Al₂O₃/SiO₂, Na₂O/CaO/SiO₂), and quaternary (SiO₂–Al₂O₃–AlN–Si₃N₄) systems.

Processing: Powder synthesis and sintering, glass forming processes, drawing, hot & cold pressing, fibre forming, blowing, powder crushing, slip casting, hydro plastic forming, extrusion, centering, jiggering, sol-gel processing, anvil technologies, ceramic coating, fusion casting, dyeing and firing, gas phase, liquid phase, solid phase ceramic fabrication processes, CVD, directed metal oxidation, reaction bonding, polymerization, metal casting, ceramic-composite processing, etc.

Bioceramics: Introduction, history, and uses, biological properties, processing of bioceramics, etc.

Ceramics Environmental Impact: Life cycle assessment of ceramics, emissions and consumptions, case studies.

Advanced Ceramics and their Applications: Toughened ceramics, cermets, functionally graded materials, piezoelectric ceramics, ceramic magnets, high temperature super-conducting magnets, glass ceramic composites, chemically bonded ceramics, ceramics in electrical applications, electro ceramics, etc.

- 1. Introduction to ceramics, W. D. Kingery, Harvey Kent Bowen, Donald Robert Uhlmann.
- 2. Ceramic Materials: Science and Engineering, C. Barry Carter, M. Grant Norton, Springer.
- 3. Handbook of Advanced Ceramics Vol II, Processing and their Applications, Shigeyuki Somiya, Elsevier Acadmic Press.
- 4. Mechanical Properties of Ceramics, Watchman J. B., John Wiley, New York.
- 5. Series in Materials Science and Engineering Fundamentals of Ceramics, Michel W. Barsoum, Institute of Physics Publishing, Bristol and Philadelphia.
- 6. Phase Equilibria and Crystallography of Ceramic Oxides, Journal of Research of the National Institute of Standards and Technology, Volume 106, Number 6, November–December 2001.
- 7. Electronic Ceramics, IEEE transactions.
- 8. Ceramic Processing and Sintering, M. N. Rahman, Marcel Dekker, Inc./CRC Press.

AMN14110 Electrical, Electronic and Magnetic Materials				
Designation	:	Compulsory		
Pre-requisites	:	Introduction to Materials Engineering		
Credit and Contact hrs	:	3(L) - 0(T) - 0(P) - 3(Cr)		
Assessment Methods	:	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks		
Course Outcomes	:	 Understand various electrical phenomenon such as band gap theory, ferro electricity, piezo electricity and pyro electricity along with dielectric behaviour of materials To study various kinds of magnetism principles, various types of materials exhibiting magnetism and their day-to-day applications in industry with recent advancements To study the theory of superconductivity phenomenon and superconducting materials and their applications along with recent advancements Understand the fundamentals of semiconducting materials and operational principles of solid-state devices made of these semiconducting materials. To learn various methods of producing semiconductors and their processing methods used in the semiconducting materials industry. To learn about photoconduction phenomenon, optical materials and various optical devices and their performances 		

Syllabus

Free electron theory - Band theory - discussion on specific materials used as conductors - Dielectric phenomena - concept of polarization- frequency and temperature dependence - dielectric loss - dielectric breakdown - ferro electricity - piezo electricity and pyro electricity – BaTiO3 – structure and properties.

Origin of Magnetism - Introduction to dia, para, ferri and ferro magnetism – Curie temperature – Magnetic anisotropy - hard and soft magnetic materials- iron based alloys - ferrites and garnets – rare earth alloys - fine particle magnets. Concept of superconductivity – BCS theory of super conductivity – Types of super conductors –YBCOstructure and

properties – specific super conducting materials – Fabrication and engineering applications.

Semiconducting materials and types; simple, compound and oxide semiconductors – semiconducting materials in devices – Production of silicon starting materials – methods for crystal growth for bulk single crystals- zone melting – Czochralski method – Epitaxial films by VPE, MBE and MOCVD techniques – Lithography

Principles of photoconductivity, luminescence- - photo detectors – Optical disc and optoelectronic materials –LCD, LED and diode laser materials - electro optic modulators - Kerr and Pockel's effect – LiNbO3

References books

1. Electrical Properties of Materials, L. Solymar, D. Walsh, Oxford University Press, USA.

- 2. Introduction to the Electronic Properties of Materials, David C. Jiles, Taylor and Francis.
- 3. Introduction to Magnetism and Magnetic Materials, D.C. Jiles, Springer.
- 4. Structure and Properties of Materials Volume IV, Rose R. M., Shepard L. A., Wulff J.
- 5. Introduction to Magnetic Materials, B. D. Cullity, Addison-Wesley Publishing Company, California, London, 1972.
- 6. Magnetism and Magnetic Materials, J. P. Jakubovics, Institute of Materials, London, 1994.
- 7. Physics of Dielectric Materials, Tareev B., MIR, 1975.
- 8. Electronic Properties of Materials, Rolf E. Hummel, Springer, 2004.
- 9. Principles of Electronic Materials and Devices, Safa O. Kasap, McGraw-Hili, 2005.
- 10. Electronic Materials Science, Irene, Wiley-Interscience, 2006.

		AMN14111 Mechanical	Behaviour of Materials			
Designation	:	Compulsory				
Pre-requisites	:	Mechanics of Materials				
Credit and Contact hrs	:	3(L) - 1(T) - 0(P) - 4(Cr)				
Assessment Methods	:	Theory Part: End Semester Exam: 40% Mid Semester Exam: 20% Teacher Assessment: 10%	Practical Part: End Semester Exam: 15% Teacher Assessment: 15%			
Course Outcomes	:	 After the completion of this course, students will be able to 1. To identify the properties of materials. 2. Understand the behaviour of materials under different type of loading conditions. 3. Able to develop materials against actual engineering problems. 				

<u>Syllabus</u>

Overview: Different responses of material to loading, material properties, macroscopic experiments and its relevance, physical mechanisms controlling the behavior.

Elasticity: Atomic structure and bonding, atomic interaction, physical origin of elastic modulus, Generalized Hooke's law, orientation dependence of elastic modulus.

Plasticity: Theoretical shear strength of crystals, Point, line and volume defects, edge and screw dislocations, Burgers circuit and Burger's vector, force between dislocations, movement and interactions of dislocations, slip planes, twinning, strengthening mechanisms, work hardening, grain boundary strengthening and solid solution strengthening, true stress-strain curve, necking phenomenon, yield criteria, plastic stress- strain relationships.

Viscoelasticity and viscoplasticity: Responses of viscoelastic materials under different loading, creep and relaxation, Maxwell and Kelvin models.

Creep and Fracture: Primary, secondary and tertiary creep, creep mechanisms, dislocation creep, diffusion creep and grain boundary creep, creep laws, Analysis and Applications in Design. Brittle, ductile and fatigue fracture, fracture surfaces, Griffith's theory, modes of fracture, energy release rate, stress intensity factor, crack tip plasticity, J-integral and Crack Tip Opening Displacement

Fatigue: Cyclic loads, constant amplitude and variable amplitude loads, cycle counting techniques, infinite life, safelife, fail-safe, damage-tolerant design philosophies, Low cycle and high cycle fatigue, Stress-Life approach, Strain-Life approach and Fracture mechanics approach, Cumulative damage theories.

Mechanical Characterization of Materials: Mechanical testing for material Characterization, Measurement techniques in experimental solid mechanics, Nondestructive testing

References books

- 1. Norman E. Dowling, Mechanical behavior of materials: Engineering Methods for Deformation, Fracture and Fatigue, Prentice Hall.
- 2. Marc Meyers and Krishnan K. Chawla, Mechanical behavior of materials, Cambridge University Press.
- 3. William F. Hosford, Mechanical behavior of materials, Cambridge University Press.
- 4. Thomas H. Courtney, Mechanical behavior of materials, Overseas Press.
- 5. Joachim Roesler, Harald Harders, and Martin Baeker, Mechanical Behavior of Engineering Materials, Springer.
- 6. Prashant Kumar, Elements of fracture mechanics, Tata McGraw Hill.
- 7. S. Suresh, Fatigue of Materials, Cambridge University Press
- 8. RW Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons.
- 9. D. Hull, DA Bacon, Introduction to dislocations, Pergamon.

10. G. E. Dieter, Mechanical Metallurgy, McGraw Hill.

	AMN14112 Characterization of Materials									
Designation	:	Compulsory								
Pre-requisites	:	Introduction to Materials Engineering								
Credit and Contact hrs	:	-0(T) - 2(P) - 4(Cr)								
Assessment Methods	:	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks								
Course Outcomes	:	 After the completion of this course, students will be able to To provide an introduction to materials characterization and its importance. To discuss different types of characterization techniques and their uses. To review the topic of crystal structure and how structures can be determined using diffraction methods. To describe the properties and behavior of x-rays and their use in materials characterization. To describe the operation and use of a TEM, SPM and a SEM. 								

Crystallography: Overviews in bonding, Bravais lattices, Miller indices, imperfections in crystals, crystal structures of common metal, ceramics, polymers. symmetries in crystals, point groups, space groups, reciprocal lattice, morphology **X-ray Diffraction Techniques:** Production of X-rays, its properties and hazards, photon scattering, X-ray diffraction and Bragg's law, intensities calculations, Laue techniques, Debye-Scherrer techniques. modern diffractometers, diffractometer measurements, determination of crystal structure of powder sample, small angle scattering, line broadening, particle size, crystallite size, residual stress measurement, plane indexing, precise parameter measurement, phase identification, phase quantification, phase diagram determination.

Optical Microscopy: Principles and operations of microscopy, resolution, magnification, numerical aperture, depth of field, viewing area, contrast, geometry of optical microscopes, application of microscopy in metallurgical studies (qualitative and quantitative), morphology and symmetry, grain boundaries and dislocations, phase contrast microscopy, polarized light microscopy, hot-stage microscopy, sample preparation.

Electron Microscopy: Electron sources, electron diffraction, principles and operation of scanning electron microscope. Construction of electron microscopes, specimen handling and preparation, secondary electron image, backscattered electron image, image processing, analysis of electron micro-graphs and fractography studies, transmission electron microscopy (TEM).

Scanning Probe Microscopy: Principles and operation of scanning probe microscopes, scanning tunneling microscope, atomic force microscope, magnetic force microscopy, topography studies, nano-indentation and its probing.

Thermal Analysis: Thermo gravimetric analysis, differential thermal analysis, differential scanning calorimetery, thermo-mechanical analysis and their applications.

List of experiments:

- 1. X-ray diffraction
- 2. Optical Microscopy
- 3. Electron Microscopy
- 4. Scanning probe microscopy
- 5. Thermal analysis

- 1. Crystals and Crystal structures, R.J.D. Tilley, John Wiley and Sons, 2006
- 2. Elements of X-ray Diffraction, Cullity B. D., Addison-Wesley Publishing Co.
- 3. Electron Microscopy and Analysis, P.J. Goodhew, F.J. Humphreys, Taylor & francis, Second edition.
- 4. Solid state chemistry and its Applications, Antony R. West, Wiley Student Edition.
- 5. Fundamentals of Molecular spectroscopy, Colin N. Banwell and Elaine M. McCash, Tat McGraw-Hill Publishing Co. Ltd., Fourth edition.
- 6. Materials Characterization: Introduction to Microscopic and Spectroscopic, Yang Leng, John Wiley&Sons.

Semester-V

Designation	:	Compulso		N15106 Ma							
Pre-requisites	:	None	-								
Credit and Contact hrs	:	3(L) - 0(1	r) – 2(P) –	4(Cr)							
		Theory Pa	art:			P	Practical Part:				
Assessment			ester Exam					er Exam: 15			
Methods	•		ester Exam			Т	eacher Ass	essment: 15	5%		
			Assessment								
				on of this c					·		
Course	:		Recognize and develop lists of independent and dependent parameters for an engineering design from which to develop quantitative measures of performance.								
Outcomes	·							r defined de	esign proje	cts.	
								naterials for			
Modes of		Talk and	chalk Pow	ver point pro	esentations	and pract	ical etc				
Delivery	·				esemations	s, and pract	ical cic.				
Mapping of course	e oi	itcomes wi	th program	n outcomes							
Course PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
$\frac{\text{outcome}}{\text{CO1}}$ $$		2					√		√		
CO1 V CO2		$\frac{1}{\sqrt{2}}$					V		√	√	
CO3		v	V V	v	V V	V			1		
			,		1	1					
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons	s sel s an ghn Des	ection, econo d Design: R ess, Design f igning with p	omics of mat ole of Crysta for yielding a plastics, britt	erials, recycli al Structure. S and fracture t le materials. I	ing and mate Stress – Stra toughness fa Design exam	rials selection in diagram, I tigue, creep ples with sha	n. Design forstre and wear res ft design, spr	ength, Rigidit sistance, britt ring design a	ty. Effect of le fracture, f nd C-frames	static strength, fatigue failure,	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co	s sel s an ghn Des ider sign h sh	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue	omics of mate ole of Crysta for yielding a blastics, brittl sign: Surface naterials dat pring design ctural section	erials, recycli al Structure, S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – a ase studies.	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection of	s sel s an ghn Des ider sign h sh omp	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue	omics of mate ole of Crysta for yielding a blastics, brittl sign: Surface naterials dat pring design ctural section	erials, recycli al Structure, S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – a ase studies.	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection of the Product Character.	s sel s an ghn Des ider sign h sh omp	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue	omics of mate ole of Crysta for yielding a blastics, brittl sign: Surface naterials dat pring design ctural section	erials, recycli al Structure, S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – a ase studies.	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection ut the Product Character. Lab Work	s sel s an ghn Des ider sign h sh omp	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth	omics of mathematics ole of Crysta for yielding a plastics, brittl sign: Surface naterials date pring design ctural section nod, Case Stu	erials, recycli al Structure, S and fracture t le materials. I e finish, Textu ta Design un andC-frames and material adies, Multiple	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – a ase studies.	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Des Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool	s sel s an ghn Des ider sign h sh omp usin ting	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a	omics of mate ole of Crysta for yielding a blastics, brittl sign: Surface naterials dat oring design ctural section nod, Case Stu	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple	ing and mate Stress – Stra coughness fa Design exam re, Dimensio der static loo , Materials a ls indices – c e Constraints	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – state ase studies. in materials s	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic a selection, Mult	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine	s sel s an ghn Des ider sign h sh omp using ing n of the	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric	omics of materials of Crysta for yielding a olastics, brittl sign: Surface naterials date oring design ctural section nod, Case Stur binary allo modulus a constant of	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple Dy. and ultimate f a PCB lam	ing and mate Stress – Stra coughness fa Design exam re, Dimensio der static loo , Materials a ls indices – c e Constraints	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – state ase studies. in materials s	n. Design forstre and wear res ft design, spr in fitting, inte le loading, and microscopic a selection, Mult	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Des Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f	s sel s an ghn Des ider sign h sh omp using ing n of the flaw	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult	omics of materials of Crysta for yielding a olastics, brittl sign: Surface naterials date oring design ctural section nod, Case Stur- binary allo modulus a constant of rasonic fla	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames and material idies, Multiple Dy. and ultimate f a PCB lam w detector.	ng and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate.	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – ase studies. in materials s	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic a selection, Mult iber strand.	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Dee Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of fi 10. To determine	s sel s an ghn Des ider sign h sh omp using in of the law fib	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult er and void	binary allo binary allo constant of constant of constant of crasonic fla l fraction of	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames and material idies, Multiple oy. and ultimate f a PCB lam w detector. f a glass fib	Ing and mate Stress – Stra coughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate.	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variabl and shape – ase studies. in materials s	n. Design forstre and wear res ft design, spr in fitting, int le loading, and microscopic a selection, Mult iber strand.	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a bading – stres uctural shape	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Dee Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate	sel s an ghn Des ider sign h sh bomp using in of the law fib	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult er and void eep of a giv	binary allo binary allo constant of rasonic fla binary allo constant of rasonic fla l fraction oven wire at	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib room temp	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate. per reinforco perature.	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – the ase studies. in materials selection of a given f cred compose	 h. Design forstream of the sign, spring in fitting, intradiction, spring in fitting, intradiction, and microscopic is selection, Multiple specime 	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a ading – stres uctural shape es, Role of Ma	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th	sel s an ghn Des ider sign h sh omp using in of the law fib e cr ne H	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric s using ult er and void eep of a giv Hall coeffic	binary allo binary allo constant of constant of constant of rasonic fla l fraction o ven wire at cient, carrie	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames is and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib c room temp er concentra	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate. Deer reinforco perature. ttion and m	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – ase studies. in materials s of a given f ced compose nobility in a	 n. Design forstreament of the sign, spring in fitting, intradiction, in fitting, intradiction, in the loading, and microscopic is selection, Multiple specime is semicondument. 	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective	ty. Effect of le fracture, f nd C-frames ity selective a ading – stres uctural shape es, Role of Ma	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th 13. To estimate th	sel- self self ghn Des ider sign h sh comp using using the law fib e cr he b	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric s using ult er and void eep of a giv fall coeffic and-gap er	binary allo binary allo constant of constant of constant of rasonic fla fraction o ven wire at cient, carrie nergy of a s	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames is and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib room temp er concentra semiconduc	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate. Deer reinforce perature. ttion and m ctor using f	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – ase studies. in materials s of a given f ced compose nobility in a four probe t	 h. Design forstreament and wear restreament ft design, spring in fitting, interpretent le loading, and microscopic association, Multiple iber strand. ite specime a semiconduce 	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Design examples with to shape efficiency Co Materials Selection ut the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th 13. To estimate th 14. To measure g	sel s an ghn Des ider sign h sh omp using in of the law fib- c cr ne E rair	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric s using ult er and void eep of a giv fall coeffic and-gap er	binary allo binary allo constant of constant of constant of rasonic fla fraction o ven wire at cient, carrie nergy of a s	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames is and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib room temp er concentra semiconduc	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o ninate. Deer reinforce perature. ttion and m ctor using f	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – ase studies. in materials s of a given f ced compose nobility in a four probe t	 h. Design forstreament and wear restreament ft design, spring in fitting, interpretent le loading, and microscopic association, Multiple iber strand. ite specime a semiconduce 	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Des Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th 13. To estimate th 14. To measure g References books	sel s an ghn Des ider sign h sh omp using in of the law fib e cr ne b rair 2	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of stru- g Ashby Meth curve of a the elastic dielectric s using ult er and void eep of a giv fall coeffic and-gap er	omics of materials of Crysta for yielding a blastics, brittl sign: Surface naterials dat oring design ctural section nod, Case Stu binary allo modulus a constant of trasonic fla l fraction o ven wire at cient, carrie nergy of a s	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple by. and ultimate f a PCB lam w detector. f a glass fib c room temp er concentra semiconduc <u>ffect of grai</u>	Ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loo , Materials a ls indices – c e Constraints e strength of hinate. ber reinforco berature. tion and m ctor using f <u>n size on h</u>	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – if ase studies. in materials so of a given f ced compose nobility in a four probe t hardness of	n. Design forstrea and wear res ft design, spr in fitting, inte le loading, and microscopic a selection, Multi iber strand. ite specime a semicondu echnique. the given n	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Dee Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th 13. To estimate th 14. To measure g <u>References books</u> 1. M.F. Ashby a 2. J.K. Tien and	sel s an ghn Des ider sign h sh pmp ising in of the law fib- e cr he b rair <u>s</u> nd G.S.	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult er and void eep of a giv Iall coeffic and-gap er size and s R.H. Jones S. Ansell (e	omics of materials of Crysta for yielding a olastics, brittl sign: Surface naterials dato oring design ctural section nod, Case Stur- binary allo modulus a constant of rasonic fla l fraction o ven wire at cient, carrie nergy of a s study the eff : Engineerfieds.): Alloy	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple by. and ultimate f a PCB lam w detector. f a glass fib room temp er concentra semiconduc ffect of grai	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loo , Materials a ls indices – c e Constraints e strength o ninate. Der reinforce perature. ttion and m ctor using f n size on h lls, Vol. 1 <i>&</i> Destructural	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – : ase studies. in materials se of a given f eed compose hobility in a four probe t hardness of \$2, Pergam Design, Ac	 h. Design forstreament and wear restricted and wear restriction, spring in fitting, interpretent le loading, and microscopic and selection, Multiple iber strand. ite speciment a semicondution echnique. the given not selection and selectio	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en. uctor crysta <u>netallic spec</u> ess.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma 1.	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
Materials Selection process and materials Materials Properties stiffness, fracture tou corrosion resistance. Manufacturing Cons geometric tolerance. Types of design, Dee Design examples with to shape efficiency Co Materials Selection of the Product Character. Lab Work 6. To study cool 7. Determination 8. To determine 9. Detection of f 10. To determine 11. To investigate 12. To estimate th 13. To estimate th 14. To measure g <u>References books</u> 1. M.F. Ashby a 2. J.K. Tien and 3. S. Ranganatha	sel s an ghn Des ider sign h sh omp using fin of the law fib e cr ne b rair 2 nd G.S.	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult er and void eep of a giv fall coeffic and-gap er size and s R.H. Jones S. Ansell (e V.S. Aruna	omics of materials of Crysta for yielding a olastics, brittl sign: Surface naterials date oring design ctural section hod, Case Stur- binary allo modulus a constant of rasonic fla l fraction o ven wire at cient, carrie hergy of a s study the eff : Engineeri eds.): Alloy achalam an	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib room temp er concentra semiconduc ffect of grai ing Materia y and Micro id R.W. Cal	ing and mate Stress – Stra toughness fa Design exam re, Dimensio der static loo , Materials a ls indices – c e Constraints e strength o hinate. Deer reinforce perature. ation and m ctor using f n size on h lls, Vol. 1 <i>&</i> pertructural nn: Alloy I	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – is ase studies. in materials se of a given f eed compose tobility in a four probe t ardness of \$2, Pergam Design, Ac Design, Ind	n. Design forstrea and wear res ft design, spr in fitting, inte le loading, and microscopic a selection, Multi iber strand. ite specime a semicondu echnique. the given n on. ademic Pre-	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en. uctor crysta <u>netallic spec</u> ess.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma 1.	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	
 To determine Detection of f To determine To investigate To estimate th To estimate th To measure g References books M.F. Ashby a J.K. Tien and 	s sel s an ghn Des ider sign h sh omp ising in of the law fib- c cr in e b rair g nd G.S. an, g: P	ection, econo d Design: R ess, Design f igning with p ations in Des tools and n aft design, sp arison of strue g Ashby Meth curve of a the elastic dielectric vs using ult er and void eep of a giv fall coeffic and-gap er size and s R.H. Jones S. Ansell (e V.S. Aruna hysical Me	omics of materials of Crysta for yielding a olastics, brittl sign: Surface naterials date oring design ctural section hod, Case Stur- binary alloc modulus a constant of rasonic fla l fraction o ven wire at cient, carrie nergy of a s study the eff : Engineeri eds.): Alloy achalam an etallurgy ar	erials, recycli al Structure. S and fracture t le materials. I e finish, Textu ta Design un andC-frames as and material idies, Multiple by. and ultimate f a PCB lan w detector. f a glass fib room temp er concentra semiconduc ffect of grai	ng and mate Stress – Stra toughness fa Design exam re, Dimensio der static loa , Materials a ls indices – c e Constraints e strength o hinate. ber reinforce perature. tion and m tor using f n size on h ostructural nn: Alloy I of Steels, A	rials selection in diagram, I tigue, creep uples with sha nal tolerances ading, variable and shape – i ase studies. in materials se of a given f eed compose tobility in a four probe t ardness of \$2, Pergam Design, Ac Design, Ind	n. Design forstrea and wear res ft design, spr in fitting, inte le loading, and microscopic a selection, Multi iber strand. ite specime a semicondu echnique. the given n on. ademic Pre-	ength, Rigidit sistance, britt ring design a erchange abili d eccentric lo and microstru tiple Objective en. uctor crysta <u>netallic spec</u> ess.	ty. Effect of le fracture, f nd C-frames ity selective a vading – stres uctural shape es, Role of Ma 1.	static strength, fatigue failure, ssembly, and ss concentration e factors – lim	

				AMN15	5107 Nano-1	naterials				
Designation		: Compuls	ory							
Pre-requisite	es	: None								
Credit and Contact hrs			T) – 2(P) –	4(Cr)						
		Theory P		Practical Part:						
Assessment		•	End Semester Exam: 40% Mid Semester Exam: 20%					Exam: 15%		
Methods						Tea	icher Asses	sment: 15%		
			Assessment							
			essful stud			proportios	and nanota	chnology		
Course										
Outcomes			nanostructures.							and and
		3. Can able to demonstrate uses of nanomaterial.								
		4. Can	able to iden	tify the sco	ope of nanor	naterial and	d nanotechi	nology.		
Modes of		· Talk and	chally Dow	or point pr	esentations,	practical	ata			
Delivery						practical, e	eit.			
Mapping of	course	outcomes w	ith program	n outcomes				1	1	1
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome			.1		.1	.1		.1		
CO1		√	V	1	N N	N		√ √		
CO2 CO3		N		N	√	N		√		
CO3 CO4		1	√ √		N	N N		N		
Syllabus	N	V	v			Ŋ				
Carbon Na Applications Nano Comp Bulk Nanos properties, C Nanostructu magnetic pro	s. oosites: tructu Compos ured F	: Introduction red Materia site glasses, l erromagnet	n to nano co Ils: Solid di Porous silic ism: Basic,	omposites, sordered na on, Nanost Para-, Ferr	their synthe anostructure ructured cry ro-, Ferri-, A	sis and app s: Synthesi ystals, and I Antiferro-m	olications is, Failure, 1 Photonic cr agnetism, 1	Mechanical ystals. Effect of bil	properties, k nano-stru	Electrical cturing on
magnetoresis				agnets, i tui	iopore cona	uninent, i t	unocuroon	remoninagine	is, Olulit ul	la corossar
List of Expe	erimen	its								
1. Synthesis										
2. Characteri										
 Hydrother Precipitati 										
5. Particle si					of mixed n	netal oxides	2			
6. Bottom up								ap estimatio	n from the	band
edge.	, synner		cust nunor	, 0	pullur ubbor	puon sp ee e		-p estimate		cuire
7. Characteri										
8. Chemical					method; U	V-Visible a	bsorption c	of the colloi	dal sol; Mi	9
formalism; E										
9. Synthesis of TiO2 by sol gel method and study its photocatalytic activity in the degradation of organic contaminants. 10. Preparation of polymer nanocomposite and study of its mechanical properties.										
11. Thermal										
12. Synthesis		iysilanes and	1 characteri	zation by I	K spectrosc	ору				
1. Introd	uction									
 Nano Structures and Nano Materials: Synthesis, Properties and Applications, Guozhong Cao- Imperial College Press. Nanomaterials, A. K. Bandyopadhyay, New Age International (p) Limited. 										al College
				-	s, Propertie	s and App	lications, C			al College

- Nanostructured Materials Processing, Properties and Applications, C. C Koch, Jaico Publishing House.
 Nanotechnology, W. I. Atkinson, Jaico Publishing House.

Designation				AMN	15108 Adv	ances in M	laterials Aj	pplication			
D	1	:	Compul	sory							
Pre-requisit	es	:	None								
Credit Contact hrs	and	:	3(L) - 0	(T) - 0(P)	– 3(Cr)						
Contact mb			Theory	Examinat	ion: (Sche	me) End Se	emester Exa	am: 50 marl	<u>s</u>		
			• • •					am: 25 mar			
Assessment	t	:						ent: 25 mark			
Methods			Interna	l Assessme	ent: (Schen			n the basis c		nt submissi	on. Surpris
				erm paper		-,			0		, I
					ident will l	earn:					
Course			1								
Outcomes		:	2								
			3								
Modes	of										
Delivery		:	Talk and	d chalk, De	emonstratio	n in laborat	ory, Power	point prese	entations, et	c.	
Mapping of	course	e oi	utcomes v	vith progra	m outcome	es					
Course							DOC	D07	DOG	DOG	DO 10
outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
			s ioi mu								pplication.
Materials f Light metal and Metalli Materials f	or sense for Aer ls and a c an no for Nai	ors :osj allc on-1 not	and actua pace App bys, High metallic fo echnolog	lications: temperatu oams. y and Nan	Essential re re materials	equirements s, Rare eart	of material h elements	ls for autom , Superallo	otive and a ys, High pe	erospace ap erforming c	ions, etc. oplications, omposites,
Materials f Light metal and Metalli Materials f system, Car	or sense for Aer ls and a c an no for Nar bon na	ors cosj allc on-i not	and actua pace App bys, High metallic fo echnolog structures	lications: temperatu oams. y and Nan	Essential re re materials oscience: N	equirements s, Rare eart Micro and r	of material h elements ano sensors	ls for autom , Superallo s, Micro and	otive and a ys, High pe d nano actu	erospace ap rforming c ators, Micr	ions, etc. oplications, omposites, o and nano
Materials f Light metal and Metalli Materials f system, Car Materials	or sense for Aer ls and a c an no for Nan bon na for S	ors osj allo on-i not ano: Sem	and actua pace App oys, High metallic fo echnolog structures iconduct	lications: temperatu oams. y and Nan , cor Devic	Essential re re materials oscience: N es and E	equirements s, Rare eart Micro and r Electronics:	of material h elements nano sensors Semicono	ls for autom , Superallo <u>r</u> s, Micro and ductor nan	otive and a ys, High pe d nano actu oparticles–	erospace ap rforming c ators, Micr application	ions, etc. oplications, omposites, o and nano s, Optical
Materials f Light metal and Metalli Materials f system, Car Materials luminescent	or sense for Aer ls and a c an no for Nai for S for S ce and	ors cosj allc on-i not ano: Sem	and actua pace App pys, High metallic for echnolog structures niconduct uorescence	lications: temperatu oams. y and Nan y and Nan y and Nan y are from di	Essential re re materials oscience: N es and E	equirements s, Rare eart Micro and r Electronics:	of material h elements nano sensors Semicono	ls for autom , Superallo <u>r</u> s, Micro and ductor nan	otive and a ys, High pe d nano actu oparticles–	erospace ap rforming c ators, Micr application	ions, etc. oplications, omposites, o and nano s, Optical
Materials f Light metal and Metalli Materials f system, Car Materials luminescent Semiconduc	or sense for Aer is and a c an no for Nar bon na for S ce and ctor qu	ors allo on-1 not ano: Sem [flu ant	and actua pace App pys, High metallic for echnolog structures niconduct uorescence	lications: temperatu oams. y and Nan y and Nan y and Nan y are from di	Essential re re materials oscience: N es and E	equirements s, Rare eart Micro and r Electronics:	of material h elements nano sensors Semicono	ls for autom , Superallo <u>r</u> s, Micro and ductor nan	otive and a ys, High pe d nano actu oparticles–	erospace ap rforming c ators, Micr application	ions, etc. oplications, omposites, o and nano s, Optical
Materials f Light metal and Metalli Materials f system, Car Materials luminescent Semiconduc References	or sense for Aer ls and s c an no for Nar bon na for S ce and ctor qu books	ors cosj allc on-i not ano: Sem l flu ant	and actua pace App pys, High metallic for echnolog structures hiconduct uorescento um dot an	lications: temperatu oams. y and Nan y and Nan or Devic ce from di rays, etc.	Essential re re materials oscience: M es and E rect band	equirements s, Rare eart Micro and r Alectronics: gap semico	of material h elements aano sensors Semicond onductor na	ls for autom , Superallo <u>r</u> s, Micro and ductor nan	otive and a ys, High pe d nano actu oparticles– s, Semicono	erospace ap rforming c ators, Micr application	ions, etc. oplications, omposites, o and nano s, Optical
Materials f Light metal and Metalli Materials f system, Car Materials uminescend Semiconduc References 1. Nuclea 2. Handb	or sense for Aer ls and a c an no for Nat bon na for S ce and ctor qu books ar Reac pook of	ors cosj allcon-i not ano: Sem l fli ant Sctor Fu	and actua pace App pys, High metallic fe echnolog structures niconduct uorescend um dot an	lications: temperaturo oams. y and Nam y and Nam tor Devic ce from di rays, etc. s and Appl	Essential re re materials oscience: N es and E rect band ications, B	equirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va	of material h elements nano sensors Semicondo onductor na n Nostrand	ls for autom , Superallo s, Micro and ductor nan anoparticles	otive and a ys, High pe d nano actu oparticles– s, Semicono Company.	erospace ap erforming c ators, Micr application ductor quar	ions, etc. oplications, omposites, o and nanc s, Optical ntum dots,
Materials f Light metal and Metalli Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and Sc	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu <u>books</u> ar Reac oook of ons, Inc	ors cosj allc on-i not no: Sem l fli ant <u>s</u> ctor Fu c.	and actua pace App pys, High metallic fr echnolog structures niconduct uorescence um dot an Material nel Cells,	lications: temperaturo oams. y and Nam y and Nam tor Device te from di trays, etc. s and Appl Wolf Viels	Essential re re materials oscience: M es and E rect band ications, B stich, Arnol	A contract of the second secon	of material h elements nano sensors Semicondo onductor na n Nostrand Iubert A. G	ls for autom , Superallo s, Micro and ductor nan anoparticles Reinhold C asteiger, an	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y	erospace ap rforming c ators, Micr application ductor quar Yokokawa,	John Wile
Materials f Light metal and Metalli Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and So 3. Advan	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu books ar Reac oook of ons, Inc aced Po	ors cosj allc on-i not ano: Sem l fli ant <u>s</u> ctor Fu c.	and actua pace App pys, High metallic fe echnolog structures niconduct uorescence um dot an Material nel Cells, er Plant M	lications: temperaturo oams. y and Nam y and Nam cor Devic te from di trays, etc. s and Appl Wolf Viels Materials, I	Essential re re materials oscience: M es and E rect band ications, B stich, Arnol	A contract of the second secon	of material h elements nano sensors Semicondo onductor na n Nostrand Iubert A. G	ls for autom , Superallo s, Micro and ductor nan anoparticles	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y	erospace ap rforming c ators, Micr application ductor quar Yokokawa,	John Wile
Materials f Light metal and Metalli Materials f system, Car Materials uminescent Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy	or sense for Aer is and a c an no for Nar bon na for S ce and ctor qu books ar Reac oook of pons, Inc ceed Po y No. 5	ors ors allo on-1 not ano: Sem l fli <u>ant</u> Stor Fu Sowe ano ant Sem l fli ant Sem l fli ant Sem ant Sem ant ant ant ant ant ant ant ant	and actua pace App pys, High metallic for echnolog structures niconduct uorescence um dot ar Material nel Cells, er Plant M nd CRC P	lications: temperatur oams. y and Nam y and Nam y and Nam y and Nam terrays, etc. s and Appl Wolf Viels Materials, I ress.	Essential re re materials oscience: M es and E rect band ications, B stich, Arnol Design and	A constraints of the second se	of material h elements, nano sensors Semicondo onductor na un Nostrand lubert A. G y, Edited b	ls for autom , Superallo s, Micro and ductor nan anoparticles Reinhold C asteiger, an	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y	erospace ap rforming c ators, Micr application ductor quar Yokokawa,	John Wile
Materials f Light metal and Metallin Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and So 3. Advan Energy 4. Ferroe	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu books ar Reac book of pons, Inc aced Po y No. 5 lectric	ors cosj allco on-i not uno: Sem l fli ant Ector Fu Ctor Fu Ctor Fu Ctor Fu Ctor Deco Deco	and actua pace App pys, High metallic for echnolog structures niconduct uorescence um dot ar Material nel Cells, er Plant M nd CRC P wices- Ke	lications: temperatur oams. y and Nam y and Nam y and Nam y and Nam y and Nam y and Nam y and Appl Wolf Viels Materials, I ress. enji Uchino	Essential re re materials oscience: M es and E rect band g ications, B stich, Arnol Design and b, Marcell E	Advirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va Id Lamm, H Technolog Decker Inc.,	of material h elements, nano sensors Semicond onductor na n Nostrand lubert A. G y, Edited b 2000.	ls for autom , Superalloy s, Micro and ductor nan anoparticles Reinhold (asteiger, an by D Roddy	otive and a ys, High pe d nano actu oparticles— s, Semicono Company. id Harumi Y , Woodhea	erospace ap rforming c ators, Micr application ductor quan Yokokawa, d Publishin	John Wile ng Series i
Materials f Light metal and Metallie Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu books ar Reac book of pons, Inc aced Po y No. 5 lectric Materi	ors ors allcon-i not ano: Sem finant Sem fin	and actua pace App pys, High metallic fe echnolog structures hiconduct uorescence um dot ar Material hel Cells, er Plant M de CRC P. evices- Ke Systems:	lications: temperatur oams. y and Nam y and Nam y cor Device ce from di trays, etc. s and Appl Wolf Viels Materials, I ress. enji Uchino Model De	Essential re re materials oscience: M es and E rect band a ications, B stich, Arnol Design and b, Marcell I velopments	Advirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va Id Lamm, H Technolog Decker Inc.,	of material h elements, nano sensors Semicond onductor na n Nostrand lubert A. G y, Edited b 2000.	ls for autom , Superallo s, Micro and ductor nan anoparticles Reinhold C asteiger, an	otive and a ys, High pe d nano actu oparticles— s, Semicono Company. id Harumi Y , Woodhea	erospace ap rforming c ators, Micr application ductor quan Yokokawa, d Publishin	John Wile ng Series i
Materials f Light metal and Metallie Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart Applie	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu books ar Reac book of pons, Inc aced Po y No. 5 lectric Materie ed Matl	ors ors allcon-i not ino: Sem fliant Sem fliant Store San De ial f hen	and actua pace App pys, High metallic for echnolog structures hiconduct uorescence um dot ar Material nel Cells, er Plant M de CRC P evices- Ke Systems: natics (No	lications: temperaturo oams. y and Nam , for Devic ce from di trays, etc. s and Appl Wolf Viels Materials, I ress. enji Uchino Model De o. 32), 2003	Essential re re materials oscience: M es and E rect band g ications, B stich, Arnol Design and b, Marcell E velopments 5.	Advirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va Id Lamm, H Technolog Decker Inc., s, Ralph C.	of material h elements, sano sensors Semicond onductor na un Nostrand Iubert A. G y, Edited b 2000. Smith, Can	ls for autom , Superallo s, Micro and ductor nan anoparticles Reinhold G asteiger, an by D Roddy nbridge Un	otive and a ys, High pe d nano actu oparticles— s, Semicono Company. d Harumi Y 7, Woodhea iversity Pre	erospace ap rforming c ators, Micr application ductor quan Yokokawa, d Publishin	John Wile ng Series i
Materials f Light metal and Metallie Materials f system, Car Materials luminescent Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart Applie 6. Ceram	or sense for Aer ls and a c an no for Nation na for S ce and ctor qui books of ons, Inco aced Poo y No. 5 electric Materie ed Mathice Mat	ors cosj allcon-i not not con-i sem l fli ant ctor Fu c. Dector Dector Dector l fli cove cove cove cove cove cove cove cove	and actua pace App pys, High metallic fe echnolog structures niconduct uorescence um dot an Material nel Cells, er Plant M nd CRC Pa evices- Ke Systems: natics (No als for Ele	lications: temperaturo oams. y and Nam , or Device ce from dirays, etc. s and Appl Wolf Viels Materials, I ress. enji Uchino Model De o. 32), 2000 ectronic Ap	Essential re re materials oscience: M es and E rect band s ications, B stich, Arnol Design and b, Marcell I velopments 5. oplication, e	Advirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va Id Lamm, H Technolog Decker Inc., s, Ralph C. edited by R	of material h elements, aano sensors Semicond onductor na un Nostrand Iubert A. G y, Edited b 2000. Smith, Can . C. Buchan	ls for autom , Superalloy s, Micro and ductor nan anoparticles Reinhold (asteiger, an by D Roddy nbridge Un	otive and a ys, High pe d nano actu oparticles– s, Semicono Company. d Harumi Y v, Woodhea iversity Pre ress.	erospace ap rforming c ators, Micr application ductor quan Yokokawa, d Publishin	jons, etc. oplications, omposites, o and nano s, Optical ntum dots, John Wile ng Series i
Materials f Light metal and Metalli Materials f system, Car Materials luminescent Semicondua References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart Applie 6. Ceram 7. Introdu	or sense for Aer ls and a c an no for Nation na for S ce and ctor qui books of ons, Inco aced Poo y No. 5 lectric Materic ed Mathic Mat uction	ors ors allo on-i not inot cont cont cont cont cont cont cont c	and actua pace App pys, High metallic fr echnolog structures niconduct uorescence um dot an Material nel Cells, er Plant M ad CRC P. vvices- Ke Systems: natics (No als for Ele Ceramics,	lications: temperaturo oams. y and Nam , or Device ce from dirays, etc. s and Appl Wolf Viels Materials, I ress. enji Uchine Model De o. 32), 2000 ectronic Ap	Essential re re materials oscience: M es and E rect band f ications, B stich, Arnol Design and o, Marcell I velopments 5. oplication, en agery, Harv	Advirements s, Rare eart Micro and r Clectronics: gap semico .M. Ma, Va Id Lamm, H Technolog Decker Inc., s, Ralph C. edited by R rey Kent Bo	of material h elements, sano sensors Semicond onductor na un Nostrand lubert A. G y, Edited b 2000. Smith, Can owen, Dona	ls for autom , Superalloy s, Micro and ductor nan anoparticles Reinhold (asteiger, an by D Roddy nbridge Un non, CRC P ld Robert U	otive and a ys, High pe d nano actu oparticles– s, Semicono Company. d Harumi Y v, Woodhea iversity Pre ress. Jhlmann.	erospace ap rforming c ators, Micr application ductor quar Yokokawa, d Publishin	jons, etc. oplications, omposites, o and nano s, Optical ntum dots, John Wile ng Series i
Materials f Light metal and Metalli Materials f system, Car Materials luminescene Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart Applie 6. Ceram 7. Introdu 8. Moder	or sense for Aer is and a c an no for Nar- bon na for S ce and ctor qui books ar Reac book of pons, Inc aced Poo y No. 5 electric Materi ed Mathi ic Mat ic Mat	ors ors allo on-i not ano: Sem I fli ant Sem I fli atto Fu S an De ial : hen eria to (not	and actua pace App pys, High metallic fe echnolog structures niconduct uorescence um dot an Material el Cells, er Plant M ed CRC P evices- Ke Systems: natics (No als for Ele Ceramics, ic material	lications: temperaturo oams. y and Nam y and Nam for Device the from di trays, etc. s and Appl Wolf Viels Materials, I ress. enji Uchino Model De to. 32), 2009 ectronic Ap W. D. Kir als: Princip	Essential re re materials oscience: M es and E rect band g ications, B stich, Arnol Design and b, Marcell I velopments 5. oplication, e ngery, Harv oles and Ap	A constraints of the second se	of material h elements, nano sensors Semicondo onductor na un Nostrand lubert A. G y, Edited b 2000. Smith, Can . C. Buchan owen, Dona R. C. O'Hat	ls for autom , Superalloy s, Micro and ductor nan anoparticles l Reinhold (asteiger, an by D Roddy nbridge Un non, CRC P Id Robert U ndly, John	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y v, Woodhea iversity Pre ress. Jhlmann. Willy & So	erospace ap erforming c ators, Micr application ductor quar Yokokawa, d Publishin ess, Series: ns, Inc.	ions, etc. oplications, omposites, o and nano s, Optical ntum dots, John Wile ng Series i Frontiers i
Materials f Light metal and Metalli Materials f system, Car Materials luminescene Semiconduc References 1. Nuclea 2. Handb and Sc 3. Advan Energy 4. Ferroe 5. Smart Applie 6. Ceram 7. Introdu 8. Moder 9. Light A	or sense for Aer is and a c an no for Nar- bon na for S ce and ctor qui books ar Reac oook of ons, Inc ced Poo y No. 5 electric Materi ed Mathi ic Materi at Control Materi an Mag Alloys:	ors ors allcon-1 not not Sem I fluant Ctor Fu Ctor C Ctor C Ctor C C Ctor Fu Ctor Fu Ctor Fu Ctor Fu C	and actua pace App pys, High metallic fe echnolog structures niconduct uorescence um dot ar Material nel Cells, er Plant M ad CRC P evices- Ke Systems: natics (Ne als for Ele Ceramics, ic materia om Tradi	lications: temperature oams. y and Name y and Name for Device the from difference temperature s and Apple Wolf Viels Materials, I ress. enji Uchino Model Device (Model Device). 32), 2009 ectronic Apple (W. D. Kir als: Princip tional Allo	Essential re re materials oscience: M es and E rect band f ications, B stich, Arnol Design and o, Marcell I velopments 5. oplication, e ngery, Harv oles and Ap ys to Nano	A constraints of the second se	of material h elements, nano sensors Semicondo onductor na un Nostrand lubert A. G y, Edited b 2000. Smith, Can . C. Buchan owen, Dona R. C. O'Hat	ls for autom , Superalloy s, Micro and ductor nan anoparticles Reinhold (asteiger, an by D Roddy nbridge Un non, CRC P ld Robert U	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y v, Woodhea iversity Pre ress. Jhlmann. Willy & So	erospace ap erforming c ators, Micr application ductor quar Yokokawa, d Publishin ess, Series: ns, Inc.	ions, etc. oplications, omposites, o and nano s, Optical ntum dots, John Wile ng Series i Frontiers i
 Handb and So Advan Energy Ferroe Smart Applie Ceram Ceram Introdu Moder Light A The Su 	or sense for Aer ls and a c an no for Nar bon na for S ce and ctor qu books ar Reac ook of ons, Inc ced Po y No. 5 electric Materii ed Mathic Materii ed Mathic Materii ed Mathic n Mag Alloys: uperalle	ors ors allcon-1 not ino: Sem I fluant ino: Sem I fluant i i i i i i i i i i i i i i i i i i i	and actua pace App pys, High metallic fe echnolog structures niconduct uorescence um dot ar Material nel Cells, er Plant M d CRC P evices- Ke Systems: natics (Not als for Ele Ceramics, ic material om Tradi c Chester	lications: temperature oams. y and Name oams. y and Name of Device the from distribution trays, etc. s and Apple Wolf Viels Materials, I ress. enji Uchino Model De o. 32), 2000 ectronic Apple W. D. Kir als: Princip tional Allo T. Sims, W	Essential re re materials oscience: M es and E rect band f ications, B stich, Arnol Design and o, Marcell E velopments 5. oplication, e ngery, Harv oles and Ap ys to Nano Viley-Interse	A constraints of the second se	of material h elements, sano sensors Semicond onductor na un Nostrand lubert A. G y, Edited b 2000. Smith, Can . C. Buchan owen, Dona R. C. O'Har J. Polmear,	ls for autom , Superalloy s, Micro and ductor nan anoparticles l Reinhold (asteiger, an by D Roddy nbridge Un non, CRC P Id Robert U ndly, John Elsevier/Bu	otive and a ys, High pe d nano actu oparticles- s, Semicono Company. d Harumi Y v, Woodhea iversity Pre ress. Jhlmann. Willy & So	erospace ap erforming c ators, Micr application ductor quar Yokokawa, d Publishin ess, Series: ns, Inc.	oplications, omposites, o and nano s, Optical ntum dots, John Wile ng Series i Frontiers i

				AMN15109) Composit	e Material	S				
Designation		: Elective									
Pre-requisite	es	: Polymer Equation	olymer Science and Composites, Basic Engineering Mathematics, Linear Algebra, Differential quations								
Credit and Contact hrs		: 3(L) - 0((L) - 0(T) - 0(P) - 3(Cr)								
Assessment Methods		: Theory	heory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks								
Course Outcomes		1. To id 2. To ur 3. To kr 4. To ha	 The successful student will learn: To identify the applications of thin films. To understand and know about the various techniques of nano-thin films. To know about the growth mechanism of nanostructured thin films. To have knowledge about synthesis and characterization of nanostructured thin films for futuristic applications. 								
Modes of Delivery		: Talk and	l chalk, Pow	er point pre	esentations,	practical, e	etc.				
Mapping of	course	outcomes w	ith program	outcomes							
Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1											
CO2											
CO3											
CO4											
<u>Syllabus</u>											

Introduction: Classification and characteristics of composites, Conventional vs. Composite materials, Advantages and limitations, Salient applications in various fields, Fabrication technologies, Properties of matrix and reinforcement materials. Micromechanics: Fiber volume fraction, micro-mechanical relations, determination of strength and stiffness, Environmental effects-Hygro-thermal behavior. Macromechanics: Basic stress-strain relationships for anisotropic materials, engineering constants for orthotropic materials, stress-strain relations for a lamina of arbitrary orientation, effective moduli, invariant properties of anorthotropic lamina, special cases of laminate stiffness, laminate strength analysis, concept of inter-laminar stresses and delamination. Failure theories and Damage mechanics: Failure mechanisms, maximum stress theory, maximum strain theory, Tsai-Hill theory, Tensor polynomial failure criterion, first ply failure theory, Introduction to damage theory based on continuum damage mechanics.

References books

1. Mechanics of fibrous composites: Carl T. Herakovic

2. Principles of Composite Material Mechanics: R. F. Gibson

3. Mechanics of Composite Materials: R. M. Jones

- 4. Introduction to Composite Material: Stephen W.Tsai and H. Thomas Hahn
- 5. Composite Materials and their use in Structures: J. R. Vinson and T.W. Chou

	AMN15351 Group Project/Research Project-I							
Designation	:	Compulsory	ompulsory					
Pre-requisites	:	None						
Credit and Contact hrs	:	1(L) - 0(T) - 2(P) - 2(Cr)	(L) - 0(T) - 2(P) - 2(Cr)					
Assessment Methods	:	Theory Part: End Semester Exam: 40% Mid Semester Exam: 20% Teacher Assessment: 10%	Practical Part: End Semester Exam: 15% Teacher Assessment: 15%					

<u>Syllabus</u>

Purpose and Objectives of independent project, Classification of projects based on different types of industries. The Art of "Searching, Reading and Selecting" the relevant project. Formulation of project. Role of mentor.

Project Design: Qualitative and Quantitative project design. Representation of Data, Types of Measurement Scales, Concept of Normality, Skewness and Dispersion of Data.

Project Writing and Presentation: Analysis with Results, Types of Graphs, Structure and Components of Reports, Tyes of Report, Steps in the Preparation of Report, Layouts, Excel, power point presentations, Illustrations and Tables, Bibliography, Referencing, Footnotes, Planning and Preparation of Presentation, Visual Aids in Presentation and use of other online medias etc. Conclusion and Future works related to the projects.

References books

1. CR Kothari and Gaurav Garg: Research methodology: Methods and Techniques, New Age International Publication.

2. Barbara Gastel and Robert A. Day: How to Write and Publish a Scientific Paper, Greenwood Publication.

3. Arnold D. Well, et al.: Research Design and Statistical Analysis, Routledge Publications.

Semester-VI

		AM	N16104 Int	roduction	to Compu	tationa	l Materials	Science			
Designation	:	Compulse	ory								
Pre-requisites	:	Applied N	Mathematic	s and comp	outation						
Credit and Contact hrs	:	3(L) - 0(T	$(\Gamma) - 2(P) - 4$	4(Cr)							
		Theory P	art:				Practical Pa	ırt:			
Assessment		End Seme	ester Exam:	40%			End Semes	ter Exam: 1	5%		
Methods	•	Mid Sem	ester Exam	: 20%			Teacher As	sessment: 1	5%		
		Teacher A	Assessment	: 10%							
Course Outcomes	:	 To ut Diffe 	2. Different multi-scale modelling technique and their correlation.								
Modes of Delivery	:	Talk and	chalk, Pow	er point pre	esentations	etc.					
Mapping of cours	e o	utcomes wi	th program	outcomes							
Course PO	1	PO2	PO3	PO4	PO5	PO	6 PO	PO8	PO9	PO10	
outcome	1	PO2	P05	P04	P05	PO	o PO	PU	P09	P010	
CO1 √							\checkmark		\checkmark		
CO2											
CO3	$\sqrt{1-1}$										
Syllabus											
Introduction and	d F	undament	als: Introdu	uction to v	arious regin	mes, m	ultiscale m	odelling &	simulation of	f materials,	

System size vs computation time, Parallel processing Ab Initio Methods: Density functional theory, quantum mechanics, schrodinger wave equation, many particle system, car parrinello method, born openheimer approximation, hohenberg-kohn theorem, kohn sham formulation, local density

car parrinello method, born openheimer approximation, hohenberg-kohn theorem, kohn sham formulation, local density approximation, bloch's theorem, pseudo potential, energy minimisation techniques, examples of crystals and non-crystals.

Molecular dynamics: Introduction to Molecular Dynamics and Monte-Carlo simulations.

Lattice Mesoscale methods: Lattice gas automata, lattice director model.

Coarse graining: Particle based models-Lattice gas model, connolly williams approximation, spatial models, dynamic (temporal) models, application to polymer and polar materials. grain continuum modelling, computational micro-mechanics, multiscale coupling.

Experiments related to Calculation of optical properties, magnetic moment in a system, surface energy, stacking fault energy, stiffness tensor, phonon dispersion relation, thermodynamic properties from the phonon dispersion relation, Raman spectra and IR spectra. Performing an ab initio Molecular dynamics simulation.

List of Experiments

- 1. Plotting of state variables (Phase space & state space) of a given dynamical system.
- 2. Numerical solution of different integral and differential equations using Scilab/Python/MATLAB.
- 3. Molecular dynamics.
- 4. Monte-Carlo simulation.
- 5. Plasticity modeling using dislocation models.
- 6. Simulation of fracture processes.
- 7. Atomistic modeling of nano-scale fracture and failure.
- 8. Designing ultra-strong alloys by nanostructuring.
- 9. Deformation mechanisms in metallic multilayers with modulated grain sizes.
- 10. Mechanics of 2D materials.
- 11. Damage and failure in composite materials.

Hands-on training is be provided on state-of-the-art atomistic modeling techniques, specifically molecular dynamics (MD) and density functional theory (DFT). For MD, LAMMPS, whereas for DFT Quantum-Espresso.

- 1. Introduction to Materials Modelling, Ed Zoe H. Barber, Maney Publishing.
- 2. Computational Material Science From Ab Initio to Monte Carlo Methods, K. Ohno, K.Esfarjani, Y. Kawazoe, Springer.
- 3. Multiscale Materials Modelling: Fundamentals and Applications, Ed Z Xiao Guo, Woodhead Publishing Limited, Cambridge.
- 4. Computational Meso-mechanics of Composites, Leon Mishnaevsky, Jr., John Wiley & Sons.
- 5. Multi-scale modelling of Composite Material Systems, C. Soutis & P. W. R. Beaumont Woodhead Publishing Ltd.
- 6. Continuum Scale Simulation of Engineering Materials-Fundamentals, Microstructures, Process Applications, Dierk Rabbe, Barlat, Wiley.

- 7. Annual Review of Materials Research on Computational Materials Research, Vol 32.
- 8. Understanding Molecular Simulation- from Algorithm to Application, Frenkel Daan, Smit Berend. Academic Press.
- 9. Notes of Workshop on Computational Materials Science, Indian Institute of Sciences, Bangalore, 06-08 Mar 2009.
- 10. Computational Material Science, Dierk Raabe, Wiley-VCH Verlag GmbH
- 11. Multiscale Modelling & Simulation, Attringer & Coumoutsakos, Springer
- 12. Computational Materials Design, Tetsuya, Springer
- 13. Combinatorial Material Science, Balaji narasimhan, Surya K Mallaprajada, Wiley
- 14. Materials Informatics, Data-Driven Discovery in Material Sc, Krishana Rajan, Wiley.

				I	AMN16105	5 Materials	in Se	ervice	es			
Designation		:	Compulso	ompulsory								
Pre-requisite	es	:	Chemistry	7								
Credit and Contact hrs			3(L) - 0(T	() - 2(P) - 4	4(Cr)							
			Theory Pa	ırt:				Prac	ctical Part:			
Assessment			End Seme	ster Exam:	40%			End	Semester E	Exam: 15%		
Methods		•	Mid Seme	ester Exam:	20%			Tead	cher Assess	ment: 15%		
			Teacher A	ssessment:	10%							
Course			The succe	essful stude	ent will lea	rn:						
Outcomes		•										
Modes of			Talls and	1. 11. Dam					al at a			
Delivery		•		mark, Powe	er point pre	sentations,	and p	ractic	al etc.			
			Mapping	of course of	utcomes wi	th program	outco	omes				
Course	P01		P02	P03	P04	P05	D)6	P07	P08	P09	P10
outcome	PUI		P02	P05	P04	P03	P	50	P07	P08	P09	PIU
CO1												
CO2												
CO3												
CO4												

Thermodynamics of Corrosion: Free energy change, EMF and galvanic series, Pourbaix diagrams, Nernst equation. Electrochemical Theory: Corrosion rate, activation polarization, concentration polarization, anodic, cathodic, mixed control. Passivation, Tafel equation. Types of Corrosion: Different forms of corrosions-uniform, galvanic, crevice, pitting, intergranular, erosion-corrosion, scc, hydrogen cracking, corrosion fatigue, fretting corrosion, effect of metallurgical variables and environments on different forms of corrosion. Corrosion Protection: Corrosion prevention methods-anodic protection, cathodic protection, inhibitors. Corrosion Testing: Electrochemical techniques-potentiostat, Tafel extrapolation, linear polarization, galvanostat, impedance spectroscopy.

Tribology: definition, significance, economic aspects, trends. Factors influencing tribological phenomena. Engineering surfaces - Surface characterization, Genesis of friction, friction in contacting rough surfaces, sliding and rolling friction, various laws and theory of friction. Wear and wear types. Mechanisms of wear - Adhesive, abrasive, corrosive, erosion, fatigue fretting, etc., Introduction to lubrication. Introduction to micro and nano tribology.

Life Cycle Assessment: Introduction to Life Cycle Assessment (LCA), Importance of LCA for the Engineering professionals, Guidance for life cycle assessment, Overview of International Standards ISO 14044 (2006), Four major stages or steps of LCA and ther relevant guidelines, Environmental impact categories in LCA.

Introduction to Life cycle assessment software. Expectation from the basic results, Inventory and impact categories and assessment, Contribution analysis, Sensitivity and Monte Carlo analysis, Interpreting the results and their meaning, Implications and strength of LCA studies, Limitations of an LCA. Sustainability in resources industries, energy, mining

and mineral processing, Sustainability in the context of metal production.

Environmental Management System (EMS), benefits, procedures and guidelines to develop EMS documents according to ISO. PDCA in the context of EMS.

Experiments related to Corrosion testing, Surface topography measurements, Friction testing, Scratch testing and wear testing.

- 1. Principles and Prevention of Corrosion, Denny A. Jones, 2nd ed., Prentice-Hall, Inc.
- 2. Corrosion Engineering, Fontana M. G., and Greene N. D., McGraw Hill.
- 3. Corrosion, Metals Handbook, Vol.13 A & B, 9th ed., ASM.
- 4. The Fundamental of Corrosion, J. C. Scully, 2nd ed., Pergamon Press.
- 5. Fundamentals of Electrochemical Corrosion, E. E. Stansbury and R. A. Buchanan, ASM International.
- 6. Heinrichs, H., Martens, P., Michelsen, G., Wiek, A., Sustainability Science An Introduction, Springer.
- 7. Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Life Cycle Assessment Theory and Practice, Springer.
- 8. Klöpffer, W., Grahl, B., Life Cycle Assessment (LCA): A Guide to Best Practice, Wiley.
- 9. Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M., The water footprint assessment manual: Setting the global standard. Routledge.

				HSN16603	3 Soft Skill	ls and Pers	onalit	y Dev	velopment			
Designation		: Com	pulso	ry								
Pre-requisite	es	: None)									
Credit and Contact hrs		: 2(L)	- 0(T	(-1(P) - 3)	B(Cr)							
Assessment Methods		: End Mid Teac	Theory Part:Practical Part:End Semester Exam: 40%End Semester Exam: 15%Mid Semester Exam: 20%Teacher Assessment: 15%Teacher Assessment: 10%Teacher Assessment: 15%									
Course Outcomes		1. Un 2. Con : 3. En d 4. Lea	 The successful student will learn: Understand the significance of soft skills and personality development. Communicate effectively through soft skills and improve the listening skills. Enable them to actively participate in group discussion, meetings, interviews and prepare and deliver presentations. Learn the techniques to improve soft skills and personality. Enable them to understand themselves and evaluate the individual's personality. 									
Modes of Delivery		: Talk	and c	halk, Powe	er point pre	esentations,	and pi	ractic	al etc.			
Denvery		Man	ning (of course of	itcomes wi	ith program	outco	mes				
Course outcome	P01	P0:		P03	P04	P05	P		P07	P08	P09	P10
CO1												
CO2												
CO3												
CO4												
CO5												
Introduction soft skills, P Unit II: Pers Group Beha of Work Lift Unit III: Per Life Manage Personality Unit IV: Inf communicat for commun Unit V: Act Stress Mana	of sof ositive onality viour, e. sonalite ement Develo ormati ion, co icatior vities gemen	sonality Evaluation and Enhancement Managing Emotions and its Relevance in Personality Development, ement with Success and Failure, Personality and Social Skills Development, 7 C s of Communication and Development ormation and Communication Technology Skills understanding the technology for effective ion, contemporary use of technology, technology and personality development, limitations in technology ication. vities for Soft Skills and Personality Development Professional Etiquettes and Work-Life Management,										
Reference b	-	1. P 2. C 3. C 4. C 5. T 6. F	 Corrosion Engineering, Fontana M. G., and Greene N. D., McGraw Hill. Corrosion and Corrosion Control, Uhlig H. H. and Revie R. W., 3rd Ed., John Wiley & Sons. Corrosion, Metals Handbook, Vol.13 A & B, 9th ed., ASM. The Fundamental of Corrosion, J. C. Scully, 2nd ed., Pergamon Press. 									

	AMN16351 Group Project/Research Project-II							
Designation	:	Compulsory						
Pre-requisites	:	None						
Credit and Contact hrs	:	0(L) - 0(T) - 4(P) - 2(Cr)						
Assessment Methods	:	As per UG Ordinance						
Review on the progress on the project								

Semester-VII

			AI	MN17102 N	Modelling a	and Simula	ation i	n Ma	terials Pro	ocessing		
Designation	1	:	Compulse		0					0		
Pre-requisit	es	:	Mechanic	s of materi	als, Heat tr	eatment, M	echan	ical P	rocessing of	of Materials	5.	
Credit and Contact hrs		:	1(L) - 0(7	(F) - 4(P) - 2	3(Cr)							
			Theory Pa	art:				Prac	ctical Part:			
Assessment				ester Exam				End	Semester I	Exam: 15%		
Methods		•		ester Exam				Teac	cher Assess	sment: 15%)	
			Teacher A	Teacher Assessment: 10%								
Course Outcomes		:	 Und Iden Cho 	completio lerstand printify, formu ose modeli cations.	nciples, me late, and so	thods, and olve engine	approa ering p	aches proble	of simulati ems.		U	rocessing
Modes of			Talk and	chalk, Pow	er point pre	sentations	and n	ractic	eal ato			
Delivery		•				semations,	anu p	lactic	ai cic.			
Mapping of	cours	e o	utcomes wi	th program	outcomes	1				1	1	
Course	PO	1	PO2	PO3	PO4	PO5	PC)6	PO7	PO8	PO9	PO10
outcome		-			,							
<u>CO1</u>					√			1	√	.1		
CO2 CO3							1	1			V	V
Introductio Casting pro- inverse moo transfer, de coefficient a Welding pr in welds, Heat treatr	ocess: delling format and ain ocess: nent: 1	Mo g, f ior ga wo Me	odelling of luid flow a n and stress p width in eld heat -so tal quencha	heat transfe nd heat tra es in castin permanent urce model nt, interfac	er, direct he nsfer mode ngs, thermo mould cast s, thermal a	el, thermod omechanica ings, contir analysis wit	ynami Il mod 1uous o th-mic	cs of elling castin rostru	solidificat g in casting g and DC c acture, trans	ion, metal/ g, determing casting proc sient fluid f	mold inter- ation of he cess, flow, residu	facial heat at transfer al stresses
quench crac						1			A	1 NT	T. (1	
Modeling of processing,												materials
Experiment				0								
References					in process	Subcu On C		ieiui (und open se	Juice 5011W		
 Model Szekel 	ing in y,J.,Ev	We 7an	elding, Hot s, J.E.and cations, Wil	Brimacom								
			pes: The A		ific Compu	ting, Camb	ridge I	Univ.	Press, N.Y	., 1988.		
			G.H. Geig								le.	
			Engineerin							1989).		
			05, "Introdu									
			2, "Modelir	ng and Sim	ulation of 1	Mineral Pro	ocessir	ng Sy	stems", So	ciety for N	lining, Me	tallurgy &
Explor	ation (SN	1E).									

		AMN17103 Machine Learning in	Materials Science						
Designation	:	Compulsory	ompulsory						
Pre-requisites	•••	Engineering Mathematics							
Credit and Contact hrs	••	3(L) - 0(T) - 2(P) - 4(Cr)							
Assessment Methods	••	Theory Part: End Semester Exam: 40% Mid Semester Exam: 20% Teacher Assessment: 10%	Practical Part: End Semester Exam: 15% Teacher Assessment: 15%						
Course Outcomes	••	 After the completion of this course, students v 1. Understand the basic concepts and techniqu 2. Identify and solve the problem using a suita 3. Able to design application using machine labeled 	ues of Machine Learning. able machine learning technique.						
Modes of Delivery	:	Falk and chalk, Power point presentations, and practical etc.							
Mapping of course outcomes with program outcomes									

Course outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	\checkmark									
CO2										
CO3										

Introduction to machine learning: Types of learning, Inductive classification, Linear regression, Decision trees, Probability and Bayes learning, Experimental evaluation of learning algorithms, Logistic regression, Support vector machine, Kernel function and Kernel SVM.

Artificial neural networks -Perceptrons, Multilayer neural networks, Back propagation algorithm, Different activation functions), Computational learning theory, Clustering and unsupervised learning.

Implementation of various Machine Learning Algorithms-Coding with software tools. Introducing machine learning tools to design solutions for various problems related to material science.

Experiments related to Machine Learning in the field of Materials Science.

References books

1. Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2017.

- 2. Alpaydin, E. "Introduction to machine learning", MIT press, 2014. Marsland, S. "Machine learning: an algorithmic perspective", CRC press, 2015.
- 3. Christopher M Bishop, "Pattern recognition and machine learning" Springer Science Business Media, 2006.
- 4. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification" Second edition John Wiley, 2001.
- 5. Tom M Mitchell, "Machine Learning", McGraw Hill Education, 2017.
- 6. Christopher M Bishop, "Pattern recognition and machine learning", Springer New York, 2016.
- 7. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y, "Deep learning" (Vol. 1). Cambridge: MIT press, 2016.
- 8. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification" Second edition John Wiley, 2001.

	AMN17351 Group Project/Research Project -III									
Designation	:	Compulsory								
Pre-requisites	:	None								
Credit and Contact hrs	:	0(L) - 0(T) - 6(P) - 3(Cr)								
Assessment Methods	:	As per UG ordinance								
Progress and final	Progress and final report submission.									

Semester-VIII

AMN18351 Industrial Training/ Group Project								
Designation	:	Compulsory						
Pre-requisites	:	None						
Credit and Contact hrs	:	(L) - 0(T) - 16(P) - 16(Cr)						
Assessment Methods	:	As per UG ordinance						

<u>Syllabus</u>

Purpose and Objectives of Industrial Training/ Group Project, Classification of projects based on different types of industries. The Art of "Searching, Reading and Selecting" the relevant project. Formulation of project. Role of mentor. Project Design: Qualitative and Quantitative project design. Representation of Data, Types of Measurement Scales, Concept of Normality, Skewness and Dispersion of Data.

Project Writing and Presentation: Analysis with Results, Types of Graphs, Structure and Components of Reports, Tyes of Report, Steps in the Preparation of Report, Layouts, Excel, power point presentations, Illustrations and Tables, Bibliography, Referencing, Footnotes, Planning and Preparation of Presentation, Visual Aids in Presentation and use of other online medias etc. Conclusion and Future works related to the projects

List of	Core	Electives	

				AM	N15255 H	igh Tempe	erature ma	terials					
Designation		:	Elective										
Pre-requisite	es	…	Structure	of Materia	ıls								
Credit and Contact hrs		:	3(L) - 0(7	Γ) – 0(P) –	3(Cr)								
Assessment Methods		:	Internal	ory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks rnal Assessment: (Scheme) 25 marks (Marks on the basis of assignment submission, rise Tests, Term paper etc)									
Course Outcomes		:	 Under proce Explation Explation 	erstand the ess. ain the creater eratures.	microstruc ep, fracture	, fatigue, ai	ctural mate	erials and hi	osion mecha	nture streng mism at ele ture.	U		
Modes of Delivery		••				resentations			-				
Mapping of	cours	e o	utcomes wi	ith program	n outcomes								
Course outcome	PO1		PO2										
CO1													
CO2			\checkmark			\checkmark			\checkmark				
CO3													
Syllahus													

<u>Syllabus</u>

Introduction: Need for high temperature materials, equipment for material testing at high temperatures, requirements of high temperature materials (mechanical properties and preferred microstructure, environmental resistance, erosion and wear)

Principles for high temperature strengthening: Metallic materials (solid solution strengthening, precipitation strengthening, dispersion strengthening grain size and grain boundary effects) Ceramic materials (phase control, defect tolerance, thermal shock resistance), composite materials.

Creep and stress rupture: Creep test, stress rupture test, structural changes during creep, mechanism of creep deformation, and fracture at elevated temperatures.

Creep- fatigue interaction: Modes of high temperature fracture and fatigue fracture, creep-fatigue interaction (creep accelerated by fatigue), fatigue-creep interaction (fatigue accelerated by creep), micro-mechanism of damage, fracture criterion for creep fatigue, creep-fatigue failure mapping, creep-fatigue testing, influence of environment.

Oxidation and Hot Corrosion: Pilling-Bedworth ratio, kinetic laws of oxidation - defect structure and control of oxidation by alloy additions - sulphation, hot gas corrosion deposit, modified hot gas corrosion, effect of alloying elements on hot corrosion.

Materials for high temperature: Metals / alloys, superalloys, steels, titanium and its alloys, ceramics (Alumina, Zirconia, Silicon carbide, Silicon nitride, Glass ceramics) composites (Metal matrix composites, ceramic matrix composites) carbon – carbon composites.

Coatings for protection against high temperature corrosion and erosion: Corrosion / oxidation resistant coatings (metallic, ceramic, rare and reactive metal reinforced coatings), high temperature erosion and wear, thermal barrier coats.

- 1. Meetham, G. W., Van de Voorde, M. H., "Materials for High Temperature Engineering Applications (Engineering Materials)", 1 st Ed., Springer
- 2. Chan R. W., "High temperature structural materials", Chapman & Hall
- 3. Reed R. C., "The Super-alloys: Fundamentals and Applications", Cambridge University Press.
- 4. Birks, N., Meier, G. H., and Pettit, F. S., "Introduction to the High Temperature Oxidation of Metals", Cambridge University Press.
- 5. Bose, S., "High Temperature Coatings", Butterworth-Heinemann.
- 6. Hertzberg R. W, 'Deformation and Fracture Mechanics of Engineering Materials', 4th Edition, John Wiley, 1996.
- 7. Courtney T.H, "Mechanical Behavior of Materials", McGraw-Hill, USA, 1990.
- 8. Raj. R., "Flow and Fracture at Elevated Temperatures", American Society for Metals, USA, 1985

				AN	1N15256 F	'erroelecti	ric Materi	ials					
Designation		:	Elective										
Pre-requisite	es	•••	Introduct	ion to Mate	rials Engin	eering							
Credit and Contact hrs		••	3(L) - 0(T	L) - $0(T) - 0(P) - 3(Cr)$									
Assessment Methods		:	Theory F	Examinatio	n: (Scheme	Mid Sen	nester Exan	n: 50 marks n: 25 marks nt: 25 marks					
Course Outcomes		••	 Unde Uses 	erstand the formation of ferroeled	ent will lea fundamenta ctric materi nowledge o	ls of ferroe als in devic	es	erials wative appl	ications				
Modes of Delivery		••	Talk and	chalk, Pow	er point pre	esentations,	practical, e	etc.					
Mapping of	cours	e o	utcomes wi	th program	outcomes					_			
Course outcome	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1													
CO2			\checkmark	\mathcal{N} \mathcal{N} \mathcal{N} \mathcal{N} \mathcal{N}									
CO3													

Fundamentals of dielectrics, Clausius-Mossotti relation, Dielectric dispersion and loss, Dielectric polarization and relaxation, Linear and non-linear dielectric, piezo-, pyro- and ferroelectric crystals Classification and properties of selected ferroelectrics, Structural, dielectric, electrical, spectroscopic and optical properties of ferroelectrics order-disorder and displacive type of phase transition

Phenomenological theory of Ferroelectrics: Dipole theory of phase transition, and thermodynamical theory of ferroelectrics: 1st order and 2nd order (Landau theory) phase transitions, critical phenomena, Lattice dynamics of Displacive phase transition, Quantum Ferroelectrics.

Ferroelectric devices: pyroelectric detectors, transducers, computer memory and display devices, non-volatile memory devices.

Piezoelectric devices: Piezoelectric Materials and Properties, Pressure Sensors/Accelerometers/Gyroscopes, Piezoelectric Actuators, Piezoelectric Vibrators / Ultrasonic Transducers, Surface Acoustic Wave Devices, Piezoelectric Transformers, Ultrasonic Motors

Electrooptic devices: Electrooptic Effect, Transparent Electrooptic Ceramics, Bulk Electrooptic Devices, Waveguide Modulators

PTC materials; composite ferroelectric materials; multiferroics; future of ferroelectric devices

- 1. K. Uchino, *Ferroelectric Devices*, Marcel, Dekker, Inc. New York, 2000.
- 2. M. E. Lines and A. M. Glass, *Principle and Applications of Ferroelectrics and Related Materials*, Clarndon Press, Oxford, 1977.
- 3. Ferroelectric Devices, Kenji Uchino, Marcel Dekker, 2000.
- 4. Dielectric Phenomena in Solids, Kwan Chi Kao, Elsevier, 2004.
- 5. Electroceramics, Herbert & Moulson, Chapman & Hall, 1993.
- 6. Physics of Ferroelectrics A Modern Perspective, Ed. Karin M. Rabe Charles H. Ahn
- 7. Jean-Marc Triscone, Springer-Verlag Berlin Heidelberg, 2007.
- 8. Ferroelectric Memories, J.F. Scott, Springer Verlag, 2000.

					AMN152	257 Energy	v Materials								
Designation		:	Elective	Elective											
Pre-requisite	es	:	Structure	Structure of materials											
Credit and Contact hrs		:	3(L) - 0(1	(L) - 0(T) - 0(P) - 3(Cr)											
Assessment Methods		:	Theory F	Examinatio	n: (Schem	Mid Sen	ester Exam nester Exan Assessment	n: 25 marks							
Course Outcomes		:	 Under Under 	npletion of stand the presence of stand the new t knowledge	rocess of en eed of susta	ergy storag	ge and conv gy and mat	ersion. erials.	cells.						
Modes of Delivery		:	Talk and	chalk, Pow	er point pre	sentations,	and practic	al etc.							
Mapping of	cours	e o	utcomes wi	ith program	outcomes										
Course outcome	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				
CO1															
CO2															
CO3															

Unit 1: *Energy sources and energy materials*: Introduction to energy sources, non-renewable and renewable sources, materials used for energy generation and storages.: Nuclear, Photovoltaics, Piezoelectric, Pyroelectric and Thermo-electrics materials, Electrostatic (capacitive), Energy Harvesting and materials. Bio energy Materials, batteries and fuel cells, application, principal and characterization of energy materials.

Unit 2: *Materials for Photovoltaics:* Principles of photovoltaic energy conversion (PV), Types of photovoltaics Cells, Physics of photovoltaic cells, First and second-generation solar cell materials; such as single and polycrystalline Silicon, amorphous silicon: growth and wafer processing, CdSe, CdTe, Copper Indium Gallium Selenide (CIGS), Gallium Arsenide, thin film solar cells, Application of Thin film processing, and properties for solar cells.

Unit 3: *Materials for Batteries:* Primary and secondary batteries, Galvanic Cells and Electrolytic Cells, Nomenclature, Potential Representation, Cathodic and Anodic Currents and Potentials, Electrolytic Cells, Electrolyte, Open Circuit Potential, Reference Electrodes, Cell Setup Electrochemistry and electro-chemical Battery materials, battery parameters and specifications, polarization, thermodynamics of battery materials, different battery technologies such as Lead–acid battery, Nickel–cadmium battery (NiCd), Nickel–metal hydride battery (NiMH), Lithium-ion battery, Lithium-ion polymer battery.

Unit 4: *Materials for Super Capacitor, and fuels cells*: Electrochemical supercapacitors, Basic components of supercapacitors like types of electrodes like high surface area, activated carbons, metal oxide and conducting polymers, aqueous and organic electrolytes. Fuel Cells, components of fuel cells, Types of fuel cells, Acid/alkaline fuel cells, polymer electrolyte fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, Solidoxide fuel cells (SOFC), Proton exchange membrane fuel cells (PEMFC); Direct methanol fuel cells (DMFC).

Unit 5: *Materials for Bio energy*: Bio-ethanol, Bio-ethanol feed stocks, Fuel Properties of ethanol, Ethanol from Biomass, Bio-ethanol production by fermentation of Carbohydrates, Bio-diesel Production methods of Bio-diesel.

- 1. Lamarsh, J.R. (1966) Introduction to Nuclear Reactor Theory, Wesley
- 2. Walter, A.E. and Reynolds, A.B. (1981) Fast Breeder Reactors, Pergamon Press
- 3. Solar Energy: Principles of Thermal Collection and Storage by SP Sukhatme, Tata McGraw-Hill. 2. Solar Engineering of Thermal Processes by JA Duffie and WA Beckman, John Wiley.
- 4. Linden D. and Reddy Thomas B., "Handbook of Batteries", 2001, McGraw Hill Publications 5. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd Edition, Wiley (2003).
- 5. Dieter, G. E., "Mechanical Metallurgy", 3rd Ed., 1988, McGrawHill
- 6. Bio-fuels: biotechnology, chemistry, and sustainable development by DM Mousdale, CRC Pres

Designation		Elective	1.11		mart Mate	ci iuis unu c	<i>ysteiiis</i>				
Pre-requisite			of materia	15							
Credit and			(0) - 0(P) - 0(P) - 0(P)								
Contact hrs		Theory L	vominati	n. (Saham	o) End So	mastar Eva	m: 50 mort	0			
Assessment		-	Lxaminatio	on: (Schem		mester Exa mester Exa					
Methods	:					r Assessmer					
		After the	completi	on of this c		dents will b		.3			
								10			
Course		 Understand the multi-domain mechanism in smart materials. Impart knowledge on various smart materials and their use as sensors and actuators in various 									
Outcomes			figurations		ous smart	indicituis di	ia men use		and detaut		
					ems with a	pplication e	xamples.				
Modes of											
Delivery	:	Talk and	chalk, Pow	ver point pro	esentations	s, and practi	ical etc.				
Mapping of	course	outcomes wi	th program	n outcomes							
Course						DOC	DO7		DOO	PO10	
outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	\checkmark	\checkmark								\checkmark	
CO2			\checkmark					\checkmark		\checkmark	
CO3			\checkmark								
<u>Syllabus</u> Introductio Smart Ma	terials		erties: P	iezoelectric	e, electros	ls. strictive, n		ctive, pyr	oelectric,	electrooptic,	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material do Smart comp Material Sy Measureme Application Chip capaci	terials tism, F ctive, el relation esign a posites ynthesis ent of p ns: Desi itor, M	and Prop byromagnetis ectrorheolog is. nd Enginee introductio s: Solid state properties: T gn and fabri emory devic	erties: P sm, Piezor gical and p ring: Crya n, working reaction, festing and ication of o ces (FRAM	iezoelectric esitivity, T magnetorhe stal structu g, applicatio sol-gel pro d characteri devices and A), Sensor,	c, electros 'hermoelec eological f ire, phase on. ocess. ization of f l structures , actuator	ls. strictive, n ctricity, sha fluids, Ther diagram an materials. s and their and transd	pe memory mochromi d effect of integration	ctive, pyr y alloy, Su c material various pa with syste	oelectric, perelastic, s. Phenome arameters. em: Biomor	electrooptic, Viscoelastic, enology and phs/Moonie es, Ultrasoni	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart comp Material Sy Measureme Application	tterials ttism, F ctive, el relation esign a posites ynthesis ent of p ns: Desi itor, M id Crys	and Prop byromagnetis ectrorheolog is. nd Enginee introductio s: Solid state properties: T gn and fabri emory devic	erties: P sm, Piezor gical and p ring: Crya n, working reaction, festing and ication of o ces (FRAM	iezoelectric esitivity, T magnetorhe stal structu g, applicatio sol-gel pro d characteri devices and A), Sensor,	c, electros 'hermoelec eological f ire, phase on. ocess. ization of f l structures , actuator	ls. strictive, n ctricity, sha fluids, Ther diagram an materials. s and their and transd	pe memory mochromi d effect of integration	ctive, pyr y alloy, Su c material various pa with syste	oelectric, perelastic, s. Phenome arameters. em: Biomor	Viscoelastic, enology and phs/Moonie	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart comp Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin	terials tism, F ctive, el relation esign a posites ynthesis ent of p ms: Desi itor, M id Crys books ectric c onics an Heidelb	and Prop byromagnetiss ectrorheolog ns. nd Enginee Introductio Solid state oroperties: T gn and fabri emory device tal display, F levices- Ken nd Smart St erg, 1999.	erties: P m, Piezor gical and p ring: Crys n, working reaction, Testing and cation of o ces (FRAM Photonics, ji Uchino, ructures- H	iezoelectric esitivity, T magnetorhe stal structu g, application sol-gel pro d characteri devices and A), Sensor, <u>Structural H</u> Marcell Do Basics, Des	c, electros hermoelec cological f are, phase on. acess. ization of p structures , actuator Health Mo ecker Inc., sign and	ls. strictive, n etricity, sha fluids, Then diagram an materials. s and their and transd <u>nitoring.</u> , 2000. Application	pe memory mochromi d effect of integration ucers, Acco s- Janocha	ctive, pyr y alloy, Su c materials various pa with syste elerometer	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin	Viscoelastic, enology and rphs/Moonie es, Ultrason	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart comp Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro	terials tism, F tive, el relation esign a posites ynthesis ent of p ms: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar	and Prop byromagnetis ectrorheolog is. nd Enginee : Introductio s: Solid state properties: T gn and fabri emory devic tal display, H levices- Ken ind Smart St erg, 1999. Is and Struc- ical Sensors	erties: P m, Piezor gical and r ring: Crya n, working e reaction, festing and cation of a ces (FRAM Photonics, ji Uchino, cructures- H ctures- M.V s and Actu	iezoelectric esitivity, T magnetorhe stal structu g, applications sol-gel pro- d characteri devices and A), Sensor, <u>Structural H</u> Marcell De Basics, Des V. Gandhi, ators, Ilene	c, electros chermoelec cological f are, phase on. cess. distructures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch-	ls. strictive, n ctricity, sha fluids, Ther diagram an materials. s and their and transd <u>nitoring.</u> , 2000. Application ompson, Cha	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and Springer-Ve	ctive, pyr y alloy, Su c material various pa with syste elerometer a Harmut Hall, Lon erlag NY,	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin	Viscoelastic, enology and rphs/Moonie es, Ultrason	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material do Smart comp Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundam	terials tism, F ctive, el relation esign a posites ynthesis ent of p ms: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals	and Prop byromagnetiss ectrorheolog ns. nd Enginee is Introduction is: Solid state properties: The gn and fabri emory device tal display, H levices- Ken nd Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelec	erties: P m, Piezor gical and p ring: Crys n, working reaction, festing and cation of o ces (FRAM Photonics, ji Uchino, ructures- H.V s and Actu	iezoelectric esitivity, T magnetorhe stal structu g, applicatio sol-gel pro d characteri devices and A), Sensor, <u>Structural I</u> Marcell Do Basics, Des V. Gandhi, ators, Ilene skuro Ikeda	c, electros 'hermoelec eological f are, phase on. cess. ization of f 1 structures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch- h, Oxford U	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd nitoring. , 2000. Application ompson, Cha Vishniac, S University F	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990	ctive, pyr y alloy, Su c material various pa with syste elerometer a Harmut Hall, Lon erlag NY,	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin	Viscoelastic, enology and rphs/Moonie es, Ultrason	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material do Smart comp Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundan 6. Piezoel	terials tism, F ctive, el relation esign a posites ynthesis ent of p ms: Desi itor, M id Crys books ectric c onics ar Heidelb Materia mechar nentals lectric S	and Prop byromagnetiss ectrorheolog is. nd Enginee is Introductio s: Solid state oroperties: T gn and fabri emory devic tal display, H levices- Ken nd Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelec Senorics, G.	perties: P m, Piezor gical and p ring: Crys n, working reaction, festing and cation of o cation o cati	iezoelectric esitivity, T magnetorhe stal structu g, applicatio sol-gel pro d characteri devices and A), Sensor, <u>Structural H</u> Marcell Do Basics, Des V. Gandhi, ators, Ilene ikuro Ikeda Springer-V	c, electros 'hermoelec eological f are, phase on. cess. ization of i structures , actuator Health Mo ecker Inc., sign and B.S. Tho b. Busch- t, Oxford U erlag Berl	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd nitoring. , 2000. Application ompson, Cha Vishniac, S University I in Heidelbe	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 erg, 2002.	ctive, pyr y alloy, Su c materials various pa with syste elerometer a Harmut Hall, Lon erlag NY,	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin ndon1992. 1999.	Viscoelastic, enology and phs/Moonie es, Ultrasoni	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material do Smart comp Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundan 6. Piezoel 7. Actuato	terials tism, F ctive, el relation esign a posites ynthesis ent of p is: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals lectric S por: Bas	and Prop byromagnetiss ectrorheolog is. nd Enginee introductio s: Solid state roperties: T gn and fabri emory devic tal display, H levices- Ken nd Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelec Senorics, G. sics and App	perties: P m, Piezor gical and p ring: Crys n, working reaction, festing and cation of o cases (FRAM Photonics, ji Uchino, ructures- H ctures- M.V s and Actu ctricity- Ta Gautschi, plications 1	iezoelectric esitivity, T magnetorhe stal structu g, applications sol-gel pro d characteri devices and A), Sensor, <u>Structural H</u> Marcell De Basics, Des V. Gandhi, ators, Ilene ikuro Ikeda Springer-V H.armut Jan	c, electros 'hermoelec cological f are, phase on. cess. ization of t structures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch- a, Oxford U erlag Berl nocha (Ed	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd nitoring. , 2000. Application ompson, Cha Vishniac, S University F in Heidelbe), Springer-	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 erg, 2002. Verlag Be	ctive, pyr y alloy, Su c materials various pa with syste elerometer h Harmut Hall, Lon erlag NY,	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin ndon1992. 1999.	Viscoelastic, enology and phs/Moonie es, Ultrasoni	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart com Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundan 6. Piezoel 7. Actuato 8. Smart	terials tism, F ctive, el relation esign a posites ynthesis ent of p is: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals lectric S por: Bas	and Prop byromagnetiss ectrorheolog is. nd Enginee introductio s: Solid state roperties: T gn and fabri emory devic tal display, H levices- Ken nd Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelec Senorics, G. sics and App	perties: P m, Piezor gical and p ring: Crys n, working reaction, festing and cation of o cases (FRAM Photonics, ji Uchino, ructures- H ctures- M.V s and Actu ctricity- Ta Gautschi, plications 1	iezoelectric esitivity, T magnetorhe stal structu g, applications sol-gel pro d characteri devices and A), Sensor, <u>Structural H</u> Marcell De Basics, Des V. Gandhi, ators, Ilene ikuro Ikeda Springer-V H.armut Jan	c, electros 'hermoelec cological f are, phase on. cess. ization of t structures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch- a, Oxford U erlag Berl nocha (Ed	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd nitoring. , 2000. Application ompson, Cha Vishniac, S University F in Heidelbe), Springer-	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 erg, 2002. Verlag Be	ctive, pyr y alloy, Su c materials various pa with syste elerometer h Harmut Hall, Lon erlag NY,	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin ndon1992. 1999.	Viscoelastic, enology and phs/Moonie es, Ultrasoni	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart com Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundan 6. Piezoel 7. Actuato 8. Smart 1991.	tterials tism, F ctive, el relation esign a posites ynthesis ent of p is: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals lectric S ors: Bas materia	and Prop byromagnetiss ectrorheolog is. nd Enginee introductio s: Solid state properties: T gn and fabri emory device tal display, F evices- Ken ind Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelece Senorics, G. sics and App Is, structures	erties: P m, Piezor gical and r ring: Crya n, working reaction, Testing and cation of a ces (FRAM Photonics, ji Uchino, ructures- M.V s and Actu etricity- Ta Gautschi, blications I s and ma	iezoelectric esitivity, T magnetorhe stal structu g, applications sol-gel pro- d characteri devices and A), Sensor, <u>Structural H</u> Marcell Do Basics, Des V. Gandhi, ators, Ilene kuro Ikeda Springer-V H.armut Jan thematical	c, electros hermoelec cological f re, phase on. cess. ization of r d structures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch- h, Oxford U erlag Berl nocha (Ed issues, R	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd <u>nitoring.</u> , 2000. Application ompson, Cha Vishniac, S University F in Heidelbe), Springer- ogers A C	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 erg, 2002. Verlag Be Craig, Tech	ctive, pyr y alloy, Su c materials various pa with syste elerometer a Harmut Hall, Lon erlag NY, rlin Heidel momic Pul	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin ndon1992. 1999. lberg, 2004 blishing Co	Viscoelastic, enology and rphs/Moonie es, Ultrasoni ager-Verlag mpany, Inc.	
SyllabusIntroducticSmartMaPiezomagneElastorestricconstitutiveMaterialMaterialGmartcomMaterialSyMeasuremeApplicationChipcapaciMotor, LiquReferences1.Ferroel2.AdaptroBerlin3.Smart4.Electro5.Fundan6.Piezoel7.Actuato8.Smart1991.9.9.Smart	tterials tism, F ctive, el relation esign a posites ynthesis ent of p s: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals lectric S ors: Bas materia	and Prop byromagnetiss ectrorheolog is. nd Enginee introductio s: Solid state oroperties: T gn and fabri emory device tal display, F levices- Ken nd Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelecc Senorics, G. sics and App Is, structures 1 Systems: 1	erties: P m, Piezor gical and r ring: Crya n, working reaction, festing and cation of o ces (FRAM Photonics, ji Uchino, ructures- M.V s and Actu ctricity- Ta Gautschi, oblications I s and ma	iezoelectric esitivity, T magnetorhe stal structu g, application sol-gel pro- d characteri devices and A), Sensor, <u>Structural H</u> Marcell Do Basics, Des V. Gandhi, ators, Ilene ikuro Ikeda Springer-V H.armut Jan thematical	c, electros hermoelec cological f are, phase on. access. ization of r structures , actuator Health Mo ecker Inc., sign and B.S. Tho b J. Busch- b, Oxford U erlag Berl nocha (Ed issues, R b, Ralph C	ls. strictive, n ctricity, sha fluids, Then diagram an materials. s and their and transd <u>nitoring.</u> , 2000. Application ompson, Cha Vishniac, S University F in Heidelbe), Springer- ogers A C	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 erg, 2002. Verlag Be Craig, Tech	ctive, pyr y alloy, Su c materials various pa with syste elerometer a Harmut Hall, Lon erlag NY, rlin Heidel momic Pul	oelectric, perelastic, s. Phenome arameters. em: Biomor , Gyroscop (Ed.), Sprin ndon1992. 1999. lberg, 2004 blishing Co	Viscoelastic, enology and rphs/Moonie es, Ultrasoni ager-Verlag mpany, Inc.	
Syllabus Introductic Smart Ma Piezomagne Elastorestric constitutive Material de Smart com Material Sy Measureme Application Chip capaci Motor, Liqu References 1. Ferroel 2. Adaptro Berlin 3. Smart 4. Electro 5. Fundan 6. Piezoel 7. Actuato 8. Smart 1991. 9. Smart	terials tism, F ctive, el relation esign a posites ynthesis ent of p as: Desi itor, M id Crys books ectric c onics an Heidelb Materia mechar nentals lectric S ors: Bas materia Materia rs in Aj	and Prop byromagnetiss ectrorheolog is. nd Enginee introductio s: Solid state properties: T gn and fabri emory device tal display, F evices- Ken ind Smart St erg, 1999. Is and Struc- tical Sensors of Piezoelece Senorics, G. sics and App Is, structures	erties: P m, Piezor gical and r ring: Crya n, working e reaction, Testing and cation of o ces (FRAM Photonics, ji Uchino, ructures- M.V s and Actu etricity- Ta Gautschi, oblications I s and ma Model De ematics (N	iezoelectric esitivity, T magnetorhe stal structu g, application sol-gel pro- d characteri devices and A), Sensor, <u>Structural H</u> Marcell Do Basics, Des V. Gandhi, ators, Ilene kuro Ikeda Springer-V H.armut Jan thematical velopments [0, 32), 200	c, electros hermoelec cological f are, phase on. acess. ization of p structures , actuator Health Mo ecker Inc., sign and B.S. Tho g. B.S. Tho g. Busch- h, Oxford U erlag Berl nocha (Ed issues, R s, Ralph C 5.	ls. strictive, n tricity, sha fluids, Ther diagram an materials. s and their and transd <u>nitoring.</u> , 2000. Application ompson, Cha Vishniac, S University H in Heidelbe), Springer- ogers A C 2. Smith, C	pe memory mochromi d effect of integration ucers, Acco s- Janocha apman and pringer-Ve Press, 1990 org, 2002. Verlag Be Traig, Tech ambridge	ctive, pyr y alloy, Su c materials various pa with syste elerometer a Harmut Hall, Lon erlag NY, rlin Heidel nomic Pul University	oelectric, iperelastic, s. Phenome arameters. em: Biomon , Gyroscop (Ed.), Sprin ndon1992. 1999. lberg, 2004 blishing Co Press, Seri	Viscoelastic, enology and rphs/Moonie es, Ultrasoni ger-Verlag ompany, Inc, es:	

				AMN152	259 Materi	ials for Nu	clear App	lications					
Designation		:	Elective										
Pre-requisite	es	:	Structure	of Material	ls								
Credit and Contact hrs		:	3(L) - 0(T	L) - $0(T) - 0(P) - 3(Cr)$									
Assessment Methods		:	Theory F	Examinatio	n: (Schem	Mid Sen		n: 50 marks n: 25 marks t: 25 marks					
Course Outcomes		:	The succ	essful stud	ent will lea	irn:							
Modes of Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practical, e	etc.					
Mapping of	cours	e o	utcomes wi	th program	outcomes								
Course outcome	РО	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1				\checkmark									
CO2													
CO3													
CO4													

Nuclear Structure: Structure of nucleus, binding energy, fission reaction, neutron cross sections, moderation of neutrons, multiplication factor.; Fusion reaction, Reactors and Materials: Classification of nuclear reactors, Materials for nuclear reactors, Fuels, Moderators, Control rods, Coolant, Reflectors and Structural materials. Fabrication of fuel and cladding materials. Radiation Effects: Effect of radiation on reactor materials, Radiation hazards, safety and shielding, disposal of radioactive wastes: Production of Nuclear Materials: Atomic minerals, their occurrence in India, General methods of their processing. Production metallurgy of nuclear grade uranium, Thorium beryllium and zirconium, Production of enriched uranium; Processing of spent fuel: Indian reactors and atomic energy programme in India. Use of nanomaterials for nuclear application

References books

1. R. Stephenson, Introduction to Nuclear Engineering, McGraw-Hill.

H.S. Ray, R. Sridhar and K.P. Abraham: Extraction of Nonferrous Metals, Affliated East-West Press Private Limited.
 S. Glasstone and A.Sesonke: Nuclear Reactor Engineering, Van Nostrand

					AMN15260) Electroni	c Ceramics	5					
Designation		:	Elective										
Pre-requisite	es	:	Ceramic N	Ceramic Materials, Structure of Materials, Phase Diagrams, etc.									
Credit and Contact hrs		:	3(L) - 0(T	L) - $0(T) - 0(P) - 3(Cr)$									
Assessment Methods		:	Theory E	Examinatio	n: (Scheme	Mid Sen	ester Exam nester Exan Assessment	n: 25 marks					
Course Outcomes		:	 To kno To und To dev 	lerstand pie velop know	ntify Electro zoelectricities ledge and u	onic Ceram ty and pieze inderstandin	pelectric cen ng of Senso	ors and Actu	lators.				
Modes of Delivery		:	Talk and	To apply concepts of Electro-ceramics for products. alk and chalk, Power point presentations, practical, etc.									
Mapping of	course	e ou	tcomes wi	th program	outcomes								
Course	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		

outcome	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POI0
CO1			\checkmark							
CO2			\checkmark							
CO3			\checkmark							
CO4			\checkmark							

<u>Syllabus</u>

General Introduction: Concepts of Electronic Ceramics, Scope of ceramics, Brief information about applications, and Advanced ceramics.

Ferro and Piezo Electric Ceramics: Ferro-electricity, Piezo-electricity, Symmetry and other criteria of ferro-electricity, ferroelectric transitions in BaTiO₃, PbTiO₃ and other related, Effect of compositional modifications and grain size, PZT, PZT film, etc.

Conducting Ceramics: Introduction, Broad band and narrow band conduction, Mott's transition. Effect of partial pressure of oxygen and doping in oxide conductors, Grain boundary effects on electrical conduction, Grain Boundary Barrier, Layer capacitors, and Ceramic superconductors.

Ceramic Magnets: Ferrites - Ni-Zn ferrites, Mn-Zn ferrites, Garnets and Hexagonal Ferrites, Processing of ferrites, Effect of composition on processing, microstructure, and properties, and Applications of magnetic ceramics.

Varisters and their Applications: Varistor Characteristics, ZnO Varistor materials systems and their processing, microstructure and applications, and Varistor models.

Thick film and Multilayer Ceramics: Formulation of conductive, resistive and dielectric inks, Screen printing and firing of hybride devices, Fabrications of multilayer devices and their applications.

Ceramics for Green Energy: Solid oxide fuel cells (SOFC) Cells, Solid electrolytesbased on stabilized zirconia, Codoped ceria, Cathode, Anode and Interconnect materials, and Batteries and solar cells.

Sensors and Actuators: Types of sensors and actuators, Thermal NTC and PTC sensors, Electrochemical sensors, Gas and humidity sensors, Piezoelectric and electro-optic sensors and actuators, Thermoelectric effect in ceramic systems, Magnetoresistance, and Colossal Magnetoresistance (CMR).

Ceramics Environmental Impact: Life cycle assessment of electro-ceramics, and Case studies.

- 1. Ceramic Materials for Electronic Application, edited by R. C. Buchanon, CRC Press.
- 2. Electronic Ceramics, edited by B. C. H. Steele, Kluwer Academics Group.
- 3. Introduction to ceramics, W. D. Kingery, Harvey Kent Bowen, Donald Robert Uhlmann.
- 4. Ceramic Materials Processes, Properties and Applications, edited by Philippe Boch Jean-Claude Niepce, ISTE.
- 5. Modern Magnetic materials: Principles and Applications, R. C. O'Handly, John Willy & Sons, Inc.

				AMN152	61 Automo	otive and A	erospace N	Materials						
Designation		:	Elective											
Pre-requisite	es	:	Structure of	structure of Materials										
Credit and Contact hrs		:	3(L) - 0(T)	(-1) - 0(T) - 0(P) - 3(Cr)										
Assessment Methods		:	Theory Ex	neory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks										
Course Outcomes		:	The course and the reco			arize the stu	dent with d	ifferent aut	omotive and	d aerospace	materials			
Modes of Delivery		:	Talk and ch	Calk and chalk, Power point presentations, practical, etc.										
Mapping of	course	e oi	utcomes with	n program	outcomes									
Course	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10													

outcome	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POI0
CO1										
CO2										
CO3										
CO4										

Introduction: Brief outline of the essential requirements of materials for automotive and aerospace applications. Battery vehicles: Battery materials and battery vehicle technology

Light Metals and Alloys: Processing, properties and applications: Aluminium alloys e.g. AlCu, Al-Si, Al-Cu-Mg, Al-Zn-Mg-Cu, Al-Li; titanium alloys e.g. alpha, near alpha, alpha beta and titanium aluminides; magnesium alloys with Cu, Zn, Zr and rare earth elements.

Superalloys: Classification and development of superalloys. Physical and mechanical properties; heat treatment, microstructures and strengthening mechanisms. Creep resistance. Oxidation and hot corrosion. Coatings. Processing developments and applications.

Steels: Heat treatment, microstructure, mechanical properties and typical applications of HSLA, dual phase, ultra low carbon, interstitial free, ultra high strength, cryogenic and maraging steels.

Composites and Metal Foams: Typical Composites and Their properties, metal-matrix, fibre reinforcement composites, carbon-carbon composites, Metal forms and their applications

References books

1. I. J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, Fifth Edition

2. Chunwen Sun, Advanced Battery Materials

3. Chester T. Sims, The superalloys

4. Frederick Brian Pickering, Physical Metallurgy and the Design of Steels

					AMN	15262 Bior	naterials				
Designation	L	:	Elective	;							
Pre-requisit	es	:	Structur	e of Materi	ials						
Credit and		:	3(L) - 0	(T) - 0(P) -	- 3(Cr)						
Contact hou	Irs										
Assessment		:	Theory					Practical Par			
Methods				nester Exar				End Semeste			
				nester Exai				Teacher Ass	essment: 15	5%	
				Assessmen							
Course					of the cour						
Outcomes								ocompatibil			
		:			vledge on d	ifferent cla	sses of bi	omaterials, c	haracteriza	tion and bi	ological
				esting.	1.6 .						
<u> </u>			3. C	hoose a ma	aterial for in	mplant app	lications.				
Modes of		_	Talla an	Jahalla Da							
Delivery		:	Talk and	i chaik, Po	wer point p	resentation	s, and pra	ictical etc.			
Mapping of	course	011	tcomes wi	th program	outcomes						
Course											
outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1			\checkmark								
CO2											\checkmark
CO3				\checkmark						\checkmark	
Biocompati Metallic In metallic imp	bility, E 1plant 5lants.	Bio- Ma	functiona iterials: S	lity, Mecha stainless ste	anical and H eels, Co-ba	Biological T sed alloys,	Testing of Ti and T	Biomaterial Ti-based allo	s. ys and Oth	er metals.	of materials, Corrosion of l applications
of Ceramic					,	I	,				TI
			olymeriza	tion, Polyn	neric implai	nt materials	, Degrada	ble Polymer	s used for B	Siomedical	Applications
Silicones, I	Hydroge	els,	Smart P	olymers a	s biomater	rials, Polyr	ners use	d for drug			Engineering
Application											
Application				Orthopedic,	, Ophthalm	ological, so	ft and ha	rd tissue.			
Text books											
•		er,	Allan S. H	loffman, Fr	ederick J. S	choen, Jack	c E. Lemo	ons Biomater	ials Science	e, Second E	dition: Wiley
Science	•										
					ls as Bioma			T 1 1	C 1 2		
				Mrsny Con	trolled Dru	g Delivery	Designin	g Technolog	y for the fu	ture Ameri	ican chemical
society					A T / 1	.' D1	D	X7 X7 1			
								New York.	manach Cl	0	I I all
5. Silver F	[.] .п, ы	om	aterials, N	ieurcal Dev	vices & 11ss	ue Enginee	ring: An	Integrated ap	oproach, Ch	iapman &	nall.

				AMN162	50 Finite E	lement N	letnoa			
Designation		: Elective								
Pre-requisite	es	: Mechani	cs of Materi	ials						
Credit and		. 3(1) 0(Γ) – 2(P) – 4	$\Lambda(\mathbf{Cr})$						
Contact hrs		. 3(L) - 0((1) - 2(r) - 4	4(CI)						
		Theory P	art:			Pr	actical Part:			
Assessment		. End Sem	ester Exami	: 40%		Er	nd Semester I	Exam: 15%		
Methods		· Mid Sem	ester Exam	: 20%		Te	eacher Assess	sment: 15%		
			Assessment							
			e completio							
Course							able to solve	manually.		
Outcomes		2.	Apply FEM							
		3.	Impart knov	wledge on o	commercial	FEA soft	ware.			
Modes of		· Talk and	chalk, Pow	er point pre	esentations	and pract	tical etc			
Delivery					coontations,	una prae	licui etc.			
	course	e outcomes w	ith program	outcomes				1		1
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome										
CO1		V		1			V		N	N
CO2			N		N			N	N	
			1							
CO3 <u>Syllabus</u> Introductio Element An Variational Virtual Wor	alysis, l Meth k and	story of FEM Demonstration ods & Ener Complementa	on through l rgy Princip	FE Analysi les: Introd	is of Axially uction to V	/ Loaded ariationa	Bar. I Calculus, E	Energy Prin	ciples – Pi	rinciple of
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation Finite element 2D & 3D E using Varia	alysis, l Meth k and ked Pri inite F . One d ent dis lemen tional	Demonstration index & Ener Complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation complementation co	I, Applicati on through gy Princip ary Virtual hods: Ritz sional struc Piecewise I lements, Su Energy Pri	FE Analysi les: Introd Work, Prin Method, M tural & non interpolatio b Parameti	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F	etization y Loaded Yariationa nimum Po Veighted 1 boundary Function Parametric	Bar. 1 Calculus, E botential Energy Residuals, Ga 7 value. s, C ⁰ and C ¹ 2 & Isoparam	ation, Diffe Energy Prin gy and Com alerkin met Interpolationetric eleme	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo	rinciple of Potential g & Weak tional 1D prmulation
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation Finite eleme 2D & 3D E using Varia Calculation	alysis, I Meth k and ked Pri inite F . One a ent dis Elemen tional of Ele	Demonstration tods & Ener Complementation complementation Clement Met & Two dimentic cretization – ts, Special El Methods & ment Matrice	I, Applicati on through gy Princip ary Virtual hods: Ritz isional struc Piecewise I lements, Su Energy Pri s.	FE Analysi les: Introd Work, Prin Method, M tural & not interpolatio b Parametri inciples. C	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t	etization V Loaded Variationa nimum Po Veighted I boundary Function Parametric ransforma	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C^0 and C^1 e & Isoparam ation & Jacc	ation, Diffe Energy Prin gy and Com alerkin met Interpolation hetric eleme obian, Num	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introduction Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio	alysis, Meth k and ced Pri inite H . One of ent dis clemen tional of Ele on to	Demonstration ods & Ener Complementat nciples. Clement Met & Two diment cretization – ts, Special El Methods & ment Matrice Material an	I, Applicati on through gy Princip ary Virtual hods: Ritz isional struc Piecewise I lements, Su Energy Pri s. d Geomet	FE Analysi les: Introd Work, Prin Method, M tural & non interpolatio b Parametri inciples. C ric Non-li	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t	etization V Loaded Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures	Bar. I Calculus, E otential Energ Residuals, Ga value. s, C ⁰ and C ¹ e & Isoparam ation & Jacc for non-lin	ation, Diffe Energy Prin gy and Com alerkin met Interpolation bian, Num ear problem	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pre	alysis, I Meth k and ked Pri inite F . One d ent dis Lemen tional of Ele on to oblem	Demonstration ods & Ener Complementanciples. Clement Met & Two diment cretization – ts, Special E Methods & ment Matrice Material an Finite Element	I, Applicati on through gy Princip ary Virtual hods: Ritz isional struc Piecewise I lements, Su Energy Pri s. d Geomet	FE Analysi les: Introd Work, Prin Method, M tural & non interpolatio b Parametri inciples. C ric Non-li	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t	etization V Loaded Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures	Bar. I Calculus, E otential Energ Residuals, Ga value. s, C ⁰ and C ¹ e & Isoparam ation & Jacc for non-lin	ation, Diffe Energy Prin gy and Com alerkin met Interpolation bian, Num ear problem	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pr List of expe	alysis, l Meth k and ked Pri inite H . One dent dis clemen tional of Ele on to oblem riment	Demonstration ods & Ener Complementanciples. Clement Met & Two diment cretization – ts, Special El Methods & ment Matrice Material an . Finite Elemonts:	I, Applicati on through 1 gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geomet ent analysis	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pr List of expe 1. Basic pro	alysis, Meth k and k and ced Pri inite F . One a cent dis Clemen tional of Ele on to oblem riment blems	Demonstrati- nods & Ener Complementa nciples. Element Met & Two dimen cretization – ts, Special El Methods & ment Matrice Material an . Finite Elemo s: in Structural	I, Applicati on through 1 gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geomet ent analysis Mechanics	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pre List of expe 1. Basic pro 2. 1D, 2D an	alysis, alysis, Meth k and k and rinte F . One a ent dis clement tional of Ele on to oblem riment blemss nd 3D	Demonstrati- nods & Ener Complementa nciples. Element Met & Two dimen cretization – ts, Special El Methods & ment Matrice Material an . Finite Elemo s: in Structural field problem	I, Applicati on through I gy Princip ary Virtual V hods: Ritz Sional struc Piecewise I lements, Su Energy Pris. d Geometre ent analysis Mechanics	FE Analysi les: Introd Work, Prin Method, M ctural & not interpolatio b Parametri inciples. C ric Non-li using com and Heat T	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pr List of expe 1. Basic pro 2. 1D, 2D an 3. Conductio	alysis, alysis, Meth k and k and rinte F inite F . One a ent dis clement tional of Ele on to oblem riment blemss nd 3D on and	Demonstrati- nods & Ener Complementa nciples. Element Met & Two dimen- cretization – ts, Special El Methods & ment Matrice Material an . Finite Elements: in Structural field problem Convection	I, Applicati on through I gy Princip ary Virtual V hods: Ritz Sional struc Piecewise I lements, Su Energy Pris. d Geometre ent analysis Mechanics	FE Analysi les: Introd Work, Prin Method, M ctural & not interpolatio b Parametri inciples. C ric Non-li using com and Heat T	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite element 2D & 3D E using Varia Calculation Introduction plasticity pri- List of exper 1. Basic pro 2. 1D, 2D ar 3. Conductio 4. Transient	alysis, alysis, Meth k and k and rinite F inite F . One a ent dis clement tional of Ele on to oblems riment blemss nd 3D on and analysis	Demonstrati- nods & Ener Complementa- nciples. Element Met & Two dimen- cretization – ts, Special El Methods & ment Matrice Material an . Finite Elements: in Structural field problem Convection I sis.	I, Applicati on through I gy Princip ary Virtual V hods: Ritz Sional struc Piecewise I lements, Su Energy Pris. d Geometre ent analysis Mechanics	FE Analysi les: Introd Work, Prin Method, M ctural & not interpolatio b Parametri inciples. C ric Non-li using com and Heat T	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weał tional 1D ormulation gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pr List of expe 1. Basic pro 2. 1D, 2D ar 3. Conducted 4. Transient 5. Vibration	alysis, I Meth k and ked Pri inite F . One d ent dis lemen tional of Ele on to oblem riment blems nd 3D on and analy	Demonstration Demonstration Complements nciples. Clement Met & Two diments cretization – ts, Special El Methods & ment Matrice Material an . Finite Elemonts s: in Structural field problem Convection I sis. sis.	I, Applicati on through I gy Princip ary Virtual V hods: Ritz Sional struc Piecewise I lements, Su Energy Pris. d Geometre ent analysis Mechanics	FE Analysi les: Introd Work, Prin Method, M ctural & not interpolatio b Parametri inciples. C ric Non-li using com and Heat T	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and	Bar. I Calculus, E otential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c	ation, Diffe Energy Prin gy and Com alerkin met Interpolation thetric eleme obian, Num ear problem oding.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introduction Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite elemed 2D & 3D E using Varia Calculation Introduction plasticity pro- List of expe 1. Basic pro 2. 1D, 2D an 3. Conduction 4. Transient 5. Vibration References	alysis, alysis, Meth k and k and rinte F . One a ent dis clemen tional of Ele on to oblems nd 3D on and analy <u>books</u>	Demonstration ods & Ener Complementanciples. Complementanciples. Clement Met & Two diment cretization – ts, Special El Methods & ment Matrice Material an Finite Elemons: in Structural field problem Convection I sis. sis.	I, Applicati on through I gy Princip ary Virtual V hods: Ritz isional struc Piecewise I lements, Su Energy Pri s. d Geomet ent analysis Mechanics is. based proble	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com and Heat T ems.	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t nearity: P mercial sof Transfer An	etization / Loaded /ariationa nimum Po /eighted I boundary Function Parametric ransforma rocedures tware and alysis usir	Bar. I Calculus, E btential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c ng Finite elen	ation, Diffe Energy Prin gy and Com alerkin met Interpolation hetric eleme obian, Num ear problem oding. nent codes.	erent Steps ciples – Pr plementary hod, Strong on, Conven ents. FE Fo erical Inte	rinciple o y Potentia g & Weak tional 1D ormulatior gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pro- List of expe 1. Basic pro 2. 1D, 2D an 3. Conductio 4. Transient 5. Vibration References 1. Energy	alysis, alysis, Meth k and k and rinte F . One a ent dis clement tional of Ele on to oblems riment blemss nd 3D on and analysis analys	Demonstration Demonstration Complementation nciples. Element Met & Two dimention cretization – ts, Special El Methods & ment Matrice Material an . Finite Elementia s: in Structural field problem Convection I sis. sis.	f, Applicati on through 1 gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geomet ent analysis Mechanics is. based proble	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com and Heat T ems.	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t nearity: P mercial sof Transfer Ans	etization Variationa Variationa nimum Po Veighted I boundary Function Parametric ransforma rocedures tware and alysis usir	Bar. I Calculus, E btential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparan ation & Jacc for non-lin MATLAB c ng Finite elen ames and C.	L. Dym.	erent Steps ciples – Proplementary hod, Strong on, Conven ents. FE Fo errical Inte ms, one-di	rinciple o y Potentia g & Weał tional 1D ormulation gration &
CO3 Syllabus Introductio Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introductio plasticity pr List of expe 1. Basic pro 2. 1D, 2D ar 3. Conductia 4. Transient 5. Vibration References 1. Energy 2. Concep	alysis, alysis, Meth k and k and rinte F . One a ent dis clement tional of Ele on to oblem riment blemss nd 3D on and analysis analy books rand F ots and	Demonstration ods & Ener Complementanciples. Element Met & Two diment cretization – ts, Special El Methods & ment Matrice Material an . Finite Element field problem Convection I sis. sis.	f, Applicati on through 1 gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geometre ent analysis Mechanics based proble	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com and Heat T ems.	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t nearity: P mercial sof Transfer Ana Transfer Ana I Mechanics alysis: R. D	vetization Vetizationa Veriationa Neighted I boundary Functiona Parametric ransforma rocedures tware and alysis usir	Bar. I Calculus, E btential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparam ation & Jacc for non-lin MATLAB c ng Finite elem ames and C. D. S. Malkus a	L. Dym.	erent Steps ciples – Proplementary hod, Strong on, Conven ents. FE Fo errical Inte ms, one-di	rinciple o y Potentia g & Weal tional 1D ormulation gration &
CO3 Syllabus Introduction Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introduction plasticity pre- List of expe 1. Basic pro 2. 1D, 2D ar 3. Conductio 4. Transient 5. Vibration References 1. Energy 2. Concep 3. The Fin	alysis, alysis, Meth k and k and rinte F . One a ent dis clement tional of Ele on to oblem riment blems nd 3D on and analy books r and F ots and nite Ele	Demonstration ods & Ener Complementanciples. Element Met & Two dimentanciples. Clement Met & Two dimentanciples. Cretization – ts, Special El Methods & ment Matricee Material an . Finite Elementanciples in Structural field problem Convection basis. sis. inite Elementanciples Applications ement Metho	f, Applicati on through 1 gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geometrent analysis Mechanics is. based proble	FE Analysi les: Introd Work, Prin Method, Metural & nor Interpolatio b Parametri inciples. C ric Non-li using com and Heat T ems.	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F coordinate t nearity: P mercial sof Transfer Ana Transfer Ana I Mechanics alysis: R. D	vetization Vetizationa Veriationa Neighted I boundary Functiona Parametric ransforma rocedures tware and alysis usir	Bar. I Calculus, E btential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparam ation & Jacc for non-lin MATLAB c ng Finite elem ames and C. D. S. Malkus a	L. Dym.	erent Steps ciples – Proplementary hod, Strong on, Conven ents. FE Fo errical Inte ms, one-di	rinciple o y Potentia g & Weal tional 1D ormulation gration &
CO3 Syllabus Introduction Element An Variational Virtual Wor Energy, Mix Classical Fi formulation. Finite eleme 2D & 3D E using Varia Calculation Introduction plasticity pre- List of expe 1. Basic pro 2. 1D, 2D an 3. Conductiod 4. Transient 5. Vibration References 1. Energy 2. Concep 3. The Fin 4. Finite F	alysis, alysis, Meth k and k and rinte F . One a ent dis clement tional of Ele on to oblem riment blems nd 3D on and analy <u>books</u> and F ots and nite Ele Element	Demonstration ods & Ener Complementanciples. Element Met & Two diment cretization – ts, Special El Methods & ment Matrice Material an . Finite Element field problem Convection I sis. sis.	I, Applicati on through I gy Princip ary Virtual V hods: Ritz sional struc Piecewise I lements, Su Energy Pri s. d Geometr ent analysis Mechanics is. based proble	FE Analysi les: Introd Work, Prin Method, M ctural & not interpolatio b Parametr inciples. C ric Non-li using com and Heat T ems.	pt of Discr is of Axially uction to V ciple of Mi fethod of V n-structural on & Shape ric, Super F oordinate t nearity: P mercial sof Transfer And Transfer And I Mechanics alysis: R. D	vetization Vetizationa Veriationa Neighted I boundary Functiona Parametric ransforma rocedures tware and alysis usir	Bar. I Calculus, E btential Energy Residuals, Ga value. s, C ⁰ and C ¹ & Isoparam ation & Jacc for non-lin MATLAB c ng Finite elem ames and C. D. S. Malkus a	L. Dym.	erent Steps ciples – Proplementary hod, Strong on, Conven ents. FE Fo errical Inte ms, one-di	rinciple o y Potentia g & Weal tional 1D ormulation gration &

Finite Element Methods in Engineering: S.S. Rao.
 Advanced Topics in Finite Element Analysis of Structures: with Mathematica and MATLAB Computations, M. Asghar Bhatti.

Designation		•	Elective		251 Optimi		liou II					
Pre-requisite		:	Mathemat	tics								
Credit and	0.5	•										
Contact hrs		:	3(L) - 0(T	$(\Gamma) - 2(P) - 4$	4(Cr)							
			Theory Pa						tical Part:			
Assessment				ester Exam				End	Semester I	Exam: 15%		
Methods		·		ester Exam				Teac	cher Assess	sment: 15%	1	
				Assessment								
Course Outcomes		:	 Developroble Developroble Developroble To developroble To developroble To developroble To developroble To developroble 	opment of t m. opment of 1 op the skill o velop the sk l Networks velop skill o	ent will lea he skill of f knowledge of Mathema ill to apply etc in real 1 of writing F ogramming	inding opti of express atical Mode Linear & N life enginee	ing a r ling on-line ring p	eal-li ear Pr roble	fe problem rogramming ms	n in terms o g, Gradient	of mathem Methods &	atics i.e t z Artificia
Modes of			into co	mputer pre	grammig							
Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practio	cal, et	tc.			
Mapping of	course		itcomes wi	th program	outcomes							
Course												
outcome	PO1	L	PO2	PO3	PO4	PO5	PO) 6	PO7	PO8	PO9	PO10
CO1										N		
CO2				•			V			V		
CO3			Ń				,			,	,	
005												
Introduction Problem stanumerical m	atemen nethod	it, 1 s.	√ nization: D Local and	√ Design varia Global op	√ ables, Desig otima, Clas	√ gn constrait sification o	of opti	imiza	tion proble	ems, Solut	ion by cal	culus an
Syllabus Introduction Problem sta numerical m Linear and N of approxim Gradient M Method, Zo technique se Introduction Equipment, Laboratory of List of Expe 1. Matrix op 2. Differenti 3. Simplex a 4. Implemer 6. Implemer	a to Op atement nethod Nonline nethods tendik earch p a to C Struct expose erimen peration iation algorith ntation ntation	it,] s. ear prop : S 's r orocc Gen ura ura ts: ns i and hm of of	√ nization: D Local and Programm gramming, teepest des nethod of : sedures. etic Algor l Mechanic to deal with integration in Matlab Newton's r Secant mer Lagrange r	√ Design varia Global op ing: Simple Kelly's Cu scent and S feasible dir cithm: Arti cs, Develop h Optimiza n of a vecto method in Ma multiplier n	√ ables, Desig otima, Clas ex method, 0 atting Plane Side step m rections, Ur ficial Neur or ent of con tion problem or and matri Matlab tlab nethod in N	√ gn constrait sification of Geometric I method. terthod. Cor neconstraine ral Networ mputer pro- ms of Engin	of opti Progra ijugate d and k, Dy gramm neering	imiza mmir Grac Const vnami nes.	tion proble ng: Applica dient methe trained Opt	ems, Solut tion to simp od, Rosin's timization,	ion by cal ple problem Gradient and penalt	ble region culus and as. Method Projection y function
Syllabus Introduction Problem sta numerical m Linear and N of approxim Gradient M Method, Zo technique se Introduction Equipment, Laboratory of List of Expet 1. Matrix op 2. Differenti 3. Simplex a 4. Implemer	a to Op atement nethod Nonline ethods tendik earch p a to C Struct exposu- erimen peration iation algorith ntation ntation ntation	it,] s. ear prog : S 's r proc Gen ura ura ts: ns i and hm of of	√ nization: D Local and Programm gramming, teepest des nethod of sedures. etic Algor l Mechanic to deal with integration in Matlab Newton's r Secant mer Lagrange r KKT theor	√ Design varia Global op ing: Simple Kelly's Cu scent and S feasible dir cithm: Arti cs, Develop h Optimiza n of a vecto method in M thod in Ma multiplier n rem in Mat	√ ables, Desig otima, Clas ex method, 0 atting Plane Side step m rections, Ur ficial Neu or ections, Ur ficial Neu or and matri or and matri vatlab tlab nethod in M lab	√ gn constrait sification of Geometric I method. terthod. Cor neconstraine ral Networ mputer pro- ms of Engin	of opti Progra ijugate d and k, Dy gramm neering	imiza mmir Grac Const vnami nes.	tion proble ng: Applica dient methe trained Opt	ems, Solut tion to simp od, Rosin's timization,	ion by cal ple problem Gradient and penalt	ble regior culus an as. Metho Projectio y functio
Syllabus Introduction Problem sta numerical m Linear and N of approxim Gradient M Method, Zo technique se Introduction Equipment, Laboratory of List of Expe 1. Matrix op 2. Differenti 3. Simplex a 4. Implemer 5. Implemer 6. Implemer 8. Implemer References	a to Op atement hethod Nonline ethods tendik earch p to O Struct expose erimen beration iation tation tation tation tation tation	it,] s. ear proj :: S 's r proc Gen ura ura ts: ns i and hm of of of	√ nization: D Local and Programm gramming, teepest des nethod of : cedures. etic Algor l Mechanic to deal with n Matlab integration in Matlab Newton's r Secant men Lagrange r KKT theon BFGS met	√ Design varia Global op ing: Simple Kelly's Cu scent and S feasible dir rithm: Arti cs, Develop h Optimiza n of a vecto method in Mat multiplier n rem in Mat hod in Mat	√ ables, Desig otima, Clas ex method, 0 atting Plane Side step m rections, Ur ficial Neu or and matri ficial Neu or and matri ficial Neu or and matri vatlab tlab nethod in N lab	√ gn constrain sification of Geometric 1 e method. tethod. Corn nconstraine ral Networ mputer pro- ms of Engin ax in Matlab	of opti Progra ijugate d and k, Dy gramm neering	imiza mmir Grac Const vnami nes.	tion proble ng: Applica dient methe trained Opt	ems, Solut tion to simp od, Rosin's timization,	ion by cal ple problem Gradient and penalt	ble regior culus an as. Metho Projectio y functio
Syllabus Introduction Problem sta numerical m Linear and N of approxim Gradient M Method, Zo technique se Introduction Equipment, Laboratory of List of Expe 1. Matrix op 2. Differenti 3. Simplex a 4. Implemer 5. Implemer 6. Implemer 7. Implemer 8. Implemer 8. Implemer 1. Engine 2. Optimi 3. Elemer 4. Cost Optimi	a to Op atement nethod Nonling ethods tendik earch p a to C Struct expose erimen peration iation algorith ntation ntation ntation tation tation tation tation tation tation	it, 1 s. ear prog :: S i's r oroc Gen ura ura ts: ns i and hm of of of Stru atic	√ nization: D Local and Programm gramming, teepest des nethod of : redures. etic Algor l Mechanic to deal with n Matlab integration in Matlab Newton's r Secant mer Lagrange r KKT theor BFGS met imization, Structural s in of Struct	√ Design varia Global op ing: Simple Kelly's Cu scent and S feasible dir cithm: Arti cs, Develop h Optimiza n of a vector nethod in Ma multiplier m rem in Matt hod in Matt thod in Matt dir Matt thod in Matt thod in Matt thod in Matt dir Matt thod in Matt thod in Matt thod in Matt thod in Matt theory and and Mecha imization: I ures: Fuzzy	√ ables, Desig otima, Clas ex method, 0 atting Plane Side step m rections, Ur ficial Neu or ections, Ur ficial Neu or and matri or and matri vatlab tlab nethod in M lab	y gn constraits sification of Geometric I method. tethod. Corn constraine ral Networ mputer pro- ms of Engin ix in Matlat fatlab S. S. Rao ms: J. S. An a and Z. Gi netic Algor	of opti Prograte d and of k, Dy gramm neering	imiza mmir Grac Const vnami nes. g	tion proble ng: Applica dient metho trained Option to program	ems, Solut tion to simp od, Rosin's timization, nming, Ap	ion by cal ple problem s Gradient and penalt plication t	ole region culus an is. Metho Projectio y functio o Proces

					AMN162	52 Non-De	structiv	ve Te	esting			
Designation		:	Elective									
Pre-requisite	es	:	Physics									
Credit and Contact hrs		:	3(L) - 0(T	(T) - 2(P) - 4	4(Cr)							
			Theory Pa	neory Part: Practical Part:								
Assessment			End Seme	d Semester Exam: 40% End Semester Exam: 15%								
Methods		•	Mid Seme	id Semester Exam: 20% End Semester Exam: 15% Teacher Assessment: 15%								
			Teacher A	Assessment	: 10%							
Course Outcomes		:	1. Un 2. De	derstand th monstrate v	e basic prin various met	burse, studenciples and a hods of Nor bods of Nor bor evaluatin	limitatio n-Destr	ons o uctiv	of Non-Des ve Testing.		esting	
Modes of Delivery		:	Talk and	3. Choose right technique for evaluating structural components. Talk and chalk, Power point presentations, and practical etc.								
Mapping of	cours	e o	utcomes wi	comes with program outcomes								
Course outcome	PO1		PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10									
CO1												

CO3 Syllabus

CO₂

Overview of NDT: Non-Destructive Testing Methods for the detection of manufacturing defects as well as material characterization, merits and limitations, Various physical characteristics of materials and their applications in NDT, Visual inspection Unaided and aided.

٦l

1

Surface NDE methods: Liquid Penetrant Testing, Magnetic Particle Testing – Principles, Types and properties of Inspection materials, Testing Procedure, Interpretation of results, Advantages and limitations.

Thermography and eddy current testing (ET): Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation. Eddy Current Testing- generation of eddy currents, properties of eddy currents, eddy current sensing elements, probes, instrumentation, types of arrangement, applications, advantages, limitations, interpretation/evaluation.

Ultrasonic testing (UT) and acoustic emission (AE): Ultrasonic Testing-Principle, Transducers, Transmission and pulseecho method, Straight beam and angle beam, Instrumentation, Data representation, A/Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique, AE parameters, Applications

Radiography (RT): Principle, Interaction of X-Ray with matter, Imaging, film and film less techniques, Types and use of filters and screens, Geometric factors, Inverse square law, Characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed Radiography, Computed Tomography.

List of Experiments:

- 1. Liquid penetrant test.
- 2. Magnetic particle testing.
- 3. Analysis of defects by ultrasonic flaw detector.

λ

- 4. Eddy current testing.
- 5. Radiographic technique.
- 6. Panoramic technique
- 7. Thermographic technique
- 8. Immersion C- Scan

- 1. Baldev Raj, T. Jayakumar, M. Thavasimuthu, 'Practical Non-Destructive Testing', Narosa Publishing House, 2009.
- 2. Ravi Prakash, 'Non-Destructive Testing Techniques', 1st revised edition, New Age International Publishers, 2010.
- 3. ASM Metals Handbook, Non-Destructive Evaluation and Quality Control, American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 4. Paul E Mix, 'Introduction to Non-destructive testing: a training guide', Wiley, 2nd Edition New Jersey, 2005.
- 5. Charles, J. Hellier, 'Handbook of Nondestructive evaluation', McGraw Hill, New York 2001.
- ASNT, American Society for Non Destructive Testing, Columbus, Ohio, 'NDT Handbook Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing, Vol. 5, Electromagnetic Testing, Vol. 6, Acoustic Emission Testing, Vol. 7, Ultrasonic Testing'.

					MAN**	*** Statist	ics for Eng	gineers			
Designation	l	:	Compulse	ory							
Pre-requisite	es	:	None								
Credit and Contact hrs		:	3(L) - 1(T	Γ) – O(P) –	4(Cr)						
Assessment Methods		:	Theory F	Examinati	on: (Scher	Mid Se	emester Exa	am: 50 marl am: 25 mar ent: 25 marl	ks		
Course Outcomes		:	 To for To fra structure 	ame proble ares and re	nplete, con ems using lationships	ncise, and c multiple r	nathematic	nematical p al and stat techniques.	istical repre	esentations	of relevant
Modes of Delivery		••				resentation					
Mapping of	cours	e o	utcomes wi	ith progran	n outcome	s					
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
Syllabus Unit 1. Pre dispersion, s				• •	classifica	tion and su	mmarizatio	on of data,	diagrams a	nd graphs, 1	measures of

Unit 2. Probability and Distribution: Introduction to probability, laws of probability, bayes theorem, binomial distribution, poisson distribution, normal distribution and gaussian distribution, mean and variance, expectation and moments, moment generating functions of these distributions.

Unit 3. Correlation and Regression: Positive and negative correlation, pearson and Mathew correlation coefficient, non-parametric tests, receiver operating characteristics (ROC) curve, linear non-linear regression, multiple regression.

Unit 4. Sampling: Concept of population and sample, random sample, methods of taking a random sample.

Unit 5. Tests of Significance: Sampling distribution of mean and standard error, large sample tests (tests for an assumed means and equality of two population means with known S.D.), small sample test (t-test for an assumed mean and equality of means of two populations when sample observations are independent, paired and unpaired), t-test for correlation and regression coefficients, t-test for comparison of variances of two populations, chi-square test for independence of attributes, goodness of fit and homogeneity if samples.

Unit 6. Experimental Designs: Principles of experimental designs, completely randomized, randomized block and latin square designs, simple factorial experiments of 22,23, 24 and 32 types. Confounding in factorial experiments (mathematical derivations not required, analysis of variance (ANOVA) and its use in the analysis of RBD.

- 1. Statistical methods in Biology by T.J. Bailey., Cambridge University Press.
- 2. Statistical methods by George W. and William G., IBH Publication.
- 3. Introduction of Biostatistics by Ipsen J., Harper and Row Publication.
- 4. Statistical methods in Biology by N.T.J. Bailey. English University Press.
- 5. A Text Book of Agricultural Statistics by R. Rangaswami, New Age Intl. Pub

				AMI	N16253 El	ectroacous	tic Transd	ucers			
Designation		:	Elective								
Pre-requisite		:	None								
Credit and Contact hrs		:	3(L) - 0(7	r) – 0(P) –	3(Cr)						
			Theory F	Examinatio	n: (Schem	e) End Ser	nester Exan	n: 50 marks			
			·					n: 25 marks			
Assessment						Teacher	Assessmen	t: 25 marks			
Methods		:		Assessmen Fests, Term			s (Marks on	the basis of	f assignmei	nt submissi	on,
Course Outcomes		:	 Can i Can a transe 	apply electr ducer.	significant o-mechanc	ce of acous b-acoustical	tics in huma analogy (ea and loudspe	quivalent ci	rcuit metho	od) for elect	roacoustic
Modes of Delivery		:	Talk and	chalk, Pow	er point pr	esentations	, and practio	cal etc.			
Mapping of	course	o	utcomes wi	th program	outcomes						
Course	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome	101		102		101	105	100		100	10)	1010
CO1			1	V	1				1	1	
CO2 CO3					$\sqrt{1}$				N	V	
transm Electro simple Acoust impeda frequer Basic pattern types o Basic system loudsp loudsp Theory piezoel piezoel	ission, b-Mecl harmo tical E ance, ac ncy and Theory , micro of micro Theory , TS pa eaker e eaker. y and A lectric lectric	ra ha: nic len con l w y a oph oph oph oph oph oph oph oph oph oph	diation & r no-Acoust c oscillator ments: Ba ustic radiat vavelength, nd Modeli hone array, hone. and Model ameters, sp closure and malysis of P evices, po crophone.	ecception of ical Analo , Helmholt: sic acousti ion impeda , dB scale, s ing of Micr microphor ling of Mic eaker non- correspond iezoelectri plarization,	acoustic v gy: Introdu z resonator c elements ince, duct i sound press rophone: I ne equation oving Coil linearities, ding circuit c Transdu equivaler	vaves, abso action, basi , loop analy , specific a mpedance, sure level. ntroduction a, electret c Transduc equivalent ts, total har acer: Brief at circuit,	rption and a c equations vsis, circuit acoustic im equivalent a, types, res- ondenser m er: Introdu circuit repr monic disto- introduction piezoelect	, plane & attenuation of s and impec- elements, L pedance, m circuit mod ponse, sens nicrophone of action, types resentation, prtion, intern n to piezoelo ric acceler	of sound. lances, tran agrange eq lechanical i lel, various itivity, spec (ECM), EC s, reciproca loudspeake modulation ectricity, pi	asformer ar juation. impedance, acoustical cifications, 2M model f al and anti- er enclosure distortion, ezoelectric	d gyrator, electrical examples, directivity for various reciprocal e, types of miniature materials,
Term Paper References 1. Acoustic 2. Introduct 3. Acoustic 4. Fundame 5. Audio Et	books s, L. L. ion to l s-An Ir entals o	. B Ele ntr	eranek, Ac ectro acous oduction, H Acoustics, 1	coustical Sc tics and Ar I. Kuttruff, Kinsler, Fre	ociety of An nplifier De Taylor & E ey, Coppen	merica. sign, W. M Francis. s, and Sanc	l. Leach, Ke	endall Hunt Viley and So	-	Company.	

Designation		.	Elective	1			& Bio-ME				
Designation Pre-requisit		· :	None								
Credit and	es	•	None								
Credit and Contact hrs		:	3(L) - 0(7	Γ) – 0(P) –	- 3(Cr)						
			Theory F	Examinati	on• (Schen	ne) End Se	mester Exa	m: 50 mark	s		
			Incory I	saunnau	on (senen			am: 25 mark			
A								nt: 25 mark			
Assessment Methods		:				1040110	110000001110				
Methous			Internal	Assessmen	nt: (Schem	e) 25 mark	ks (Marks o	n the basis	of assignm	ent submis	sion,
			Surprise '	Tests, Tern	n paper etc)					
			The suce	occful ctur	dent will le	orn•					
Course							s and comp	are it with o	convention	al products	
Outcomes		:			and explai				convention	ai producto	•
outcomes								n conventio	nal FEM so	oftware.	
Modes of											
Delivery		:	Talk and	chalk, Pov	ver point pr	resentations	s, and pract	ical etc.			
Mapping of	course	e oi	utcomes wi	ith progran	n outcomes	6					
Course	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome	101		102	105	104	105	100	107	100	10)	1010
CO1			√			√					
CO2						V	V				
CO3											
Introduction Review of 1 thermal stre Scalin Material for silicon, silio	Essent ss, tors g Law or ME	tial sion s in MS	Mechanic of beam, Miniatur S: Review	cal, Electr fracture, v rization: S of crystal	ical Conce ibration etc scaling in g structure,	epts: Mech c, Electrical eometry, fo miller indi	nanical: stre l: Conducto orce, electri ces, materi	ess, strain, l or, insulator city, fluid, al for MEM	beam, canti , semicond heat transfe MS, substra	uctor. er, etc. ate, device,	packagin
Introduction Review of 2 thermal stree Scalin Material for silicon, silic issues etc. Micro Tota components polynucleot Sensing ar	Essent ss, tors g Law or ME con con al Ana s, µ-Tz ide arr ad Ac	ial sion s in MS mp aly AS: ays tua	Mechanic n of beam, n Miniatur S: Review ound, galli sis System and genet tion: Elec	cal, Electr fracture, v rization: S of crystal ium arsenio n (μTAS): n, cell han cic screenin ctrostatic	ical Conce ibration etc caling in g structure, de, piezoel : Fluid con adling and ng. sensing an	epts: Mech e, Electrical eometry, for miller indi ectric mart ntrol comp characteriz	hanical: stre l: Conducto prce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal	ess, strain, l or, insulator city, fluid, al for MEM polymer, l TAS: samp ems, systen sensing a	beam, canti , semicond heat transfe MS, substra biomaterial ple handlir ns for bio and actuati	uctor. er, etc. ate, device, s and biocong, μ-TAS technology	packagin ompatibili separatic and PCI electric ar
Introduction Review of 2 thermal stree Scalim Material for silicon, silic issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable	Essent ss, tors g Law or ME con con al Ana s, μ -Tz ide arr nd Active sen device	tial sion s in MS mp aly AS ays tua sin es,	Mechanic n of beam, n Miniatur S: Review ound, galli sis System and genet tion: Elec g and actu neural inte	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n , cell han cic screenin ctrostatic suation, ma erfaces, mi	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen- icrosurgical	epts: Mech e, Electrical eometry, fo miller indi ectric mart ntrol comp characteriz ad actuatio sing and a	anical: stre l: Conducto orce, electri ces, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r	ess, strain, l or, insulator icity, fluid, al for MEM polymer, l TAS: samp ems, systen sensing a niniature b	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors,	uctor. er, etc. ate, device, s and biocong, µ-TAS technology ton, piezoe biosensors	packagin ompatibilit separatic and PCI electric an arrays an
Introduction Review of 1 thermal stree Scalim Material for silicon, silicon sisues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication	Essent ss, tors g Law or ME con con al Ana s, μ -T2 ide arr nd Active sen device , tissue n of M	tial sion s in MS mp aly AS ays tua sin es, es, EN	Mechanic n of beam, n Miniatur S: Review ound, galli sis System and genet tion: Elec g and actu neural into affolds, op IS: Bulk n	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n , cell han cic screenin ctrostatic s uation, ma erfaces, mi otical biose nicromachi	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical msors, etc. ining, surfa	epts: Mech e, Electrical eometry, for miller indi ectric mart ntrol comp characterized actuation sing and a l tools, mic ce microm	anical: stre l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography,	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ms for bio and actuati iosensors, delivery, M LIGA, SLI	uctor. er, etc. ate, device, s and biocong, μ-TAS technology toon, piezoe biosensors ficrosystem	packagin ompatibili separatio and PCI electric ar arrays ar s for tissu
Introduction Review of 1 thermal stree Scalinn Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Act ve sen device , tissue n of M ckagin	tial sion s in MS mp aly AS ays tua sin es, es, EN	Mechanic n of beam, n Miniatur S: Review ound, galli sis System and genet tion: Elec g and actu neural into affolds, op IS: Bulk n	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n , cell han cic screenin ctrostatic s uation, ma erfaces, mi otical biose nicromachi	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical msors, etc. ining, surfa	epts: Mech e, Electrical eometry, for miller indi ectric mart ntrol comp characterized actuation sing and a l tools, mic ce microm	anical: stre l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography,	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ms for bio and actuati iosensors, delivery, M LIGA, SLI	uctor. er, etc. ate, device, s and biocong, μ-TAS technology toon, piezoe biosensors ficrosystem	packagin ompatibili separatio and PCI electric ar arrays ar s for tissu
Material fo silicon, silio issues etc. Micro Tot: components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Act ve sen device , tissue n of M ckagin c.	tial sion s in MS mp alys ays tua sin es, e sc EN ng:	Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elea g and actu neural inte affolds, op IS: Bulk n MEMS n	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n, cell han tic screenin ctrostatic s uation, ma erfaces, mi btical biose nicromachi netrology,	 ical Conce ibration etc caling in g structure, de, piezoel Fluid con adling and ng. sensing an ignetic sen icrosurgical ensors, etc. ining, surfa Overview 	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag	nanical: stre l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic	beam, canti , semicond heat transfe MS, substra- biomaterial ole handlir ns for bio and actuati iosensors, delivery, N LIGA, SLI cs, packag	uctor. er, etc. ate, device, s and biocong, μ-TAS technology ion, piezoe biosensors ficrosystem GA, etc. ing design	packagin ompatibilit separatic and PCI electric ar arrays ar as for tissu , techniqu
Introduction Review of 1 thermal stree Scalinn Material for silicon, silicon issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etco MEMS Des	Essent ss, tors g Law or ME con con al Ana s, μ -T2 ide arr d Act ve sen device , tissue n of M ckagin c. sign an	tial sion s in MS mp aly; AS ays tua sin es, e sc EN ng: nd	Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elec g and actu neural inte affolds, op IS: Bulk n MEMS n Software:	cal, Electr fracture, v rization: S of crystal ium arsenic n (μTAS): n , cell han tic screenin ctrostatic uation, ma erfaces, mi otical biose nicromachi netrology, Design m	 ical Conce ibration etc. icaling in g structure, de, piezoel Fluid conding and ing. sensing an gnetic sen- icrosurgical ensors, etc. ining, surfa Overview 	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI	nanical: stre l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares	uctor. er, etc. ate, device, s and biocong, μ-TAS technology ion, piezoe biosensors ficrosysten GA, etc. ing design s based on	packagin ompatibili separatic and PCl electric ar arrays ar as for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalinn Material for silicon, silicon issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa- material, etco MEMS Des Ansys multi	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr ide arr ide arr ide arr id Act ve sen device , tissue of M ckagin c. sign an iphysic	tial sion s in MS mp aly AS ays tua sin es, esc EN g: nd cs, (Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elec g and actu neural inte affolds, op IS: Bulk n MEMS n Software: COMSOL	cal, Electr fracture, v rization: S of crystal ium arsenic n (μ TAS): n, cell han ic screenin ctrostatic uation, ma erfaces, mi btical biose nicromachi netrology, Design m multiphysi	ical Conce ibration etc Scaling in g structure, de, piezoel Fluid con adling and ng. sensing an agnetic sen icrosurgical ensors, etc. ining, surfa Overview ethodologi- ics, MatLab	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui	anical: stream l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCA	ess, strain, l or, insulator city, fluid, al for MEM polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic of following AD, SolidW	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares	uctor. er, etc. ate, device, s and biocong, μ-TAS technology ion, piezoe biosensors ficrosysten GA, etc. ing design s based on	packagin ompatibili separatic and PCl electric ar arrays ar as for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silicon sisues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etcon MEMS Des Ansys multi Ferm Pape	Essent ss, tors g Law or ME con con al Ana s, μ-Tz ide arr nd Act ve sen device , tissue n of M ckagin ckagin cs sign an iphysic <u>r: On p</u>	tial sion s in MS mp aly: AS rays tua sin es, es, EN ng: nd cs, (<u>rec</u>	Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elec g and actu neural inte affolds, op IS: Bulk n MEMS n Software: COMSOL	cal, Electr fracture, v rization: S of crystal ium arsenic n (μ TAS): n, cell han ic screenin ctrostatic uation, ma erfaces, mi btical biose nicromachi netrology, Design m multiphysi	ical Conce ibration etc Scaling in g structure, de, piezoel Fluid con adling and ng. sensing an agnetic sen icrosurgical ensors, etc. ining, surfa Overview ethodologi- ics, MatLab	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui	anical: stream l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCA	ess, strain, l or, insulator city, fluid, al for MEM polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic of following AD, SolidW	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares	uctor. er, etc. ate, device, s and biocong, μ-TAS technology ion, piezoe biosensors ficrosysten GA, etc. ing design s based on	packagin ompatibili separatic and PCl electric ar arrays ar as for tissu , techniqu availabilit
Introduction Review of 12 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etce MEMS Des Ansys multi Term Pape References	Essent ss, tors g Law or ME con con al Ana con con al Ana d	tial sion x = in MS mp aly: AS: x = xc x = xc EN rec rec rec	Mechanic n of beam, n Miniatur S: Review ound, galli sis System and genet tion: Elec g and actur neural inte affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n, cell han ic screenin ctrostatic s uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysi ces based o	ical Conce ibration etc ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical ensors, etc. ining, surfa Overview aethodologie ics, MatLat n literature	epts: Mech e, Electrical eometry, for miller indi ectric mart ntrol comp characteriz id actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui survey and	hanical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCA	ess, strain, l or, insulator city, fluid, al for MEM polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic of following AD, SolidW	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares	uctor. er, etc. ate, device, s and biocong, μ-TAS technology ion, piezoe biosensors ficrosysten GA, etc. ing design s based on	packagin ompatibili separatic and PCI electric ar arrays ar as for tissu , techniqu availabilit
Introduction Review of 12 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Active sen device, tissue n of M ckagin ckagin sign an iphysic r: On r books ations of	tial sion s in MS mp aly_3 cays tua sin es, es	Mechanic n of beam, n Miniatur S: Review ound, galli sis System detection and genet tion: Elec g and actu neural into affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance	cal, Electr fracture, v rization: S of crystal ium arsenia n (μTAS): n, cell han ctrostatic s uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysi ces based o	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical msors, etc. ining, surfa Overview aethodologi n literature Pearson Edu	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characterized actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui survey and ication Inte	anical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCa d/or lab/ind ernational.	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, croelectronic of following AD, SolidW ustry visit	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares vorks, Spice	uctor. er, etc. ate, device, s and bioconn g, μ-TAS technology fon, piezoe biosensors ficrosystem GA, etc. ing design s based on e, Ledit etc	packagin ompatibili separatic and PCI electric ar arrays ar s for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda 2. MEMS	Essent ss, tors g Law or ME con col al Ana s, μ-TA ide arr ide arr id	tial sion s in MS mp aly_3 cays tua sin es, es	Mechanic n of beam, n Miniatur S: Review ound, galli sis System detection and genet tion: Elec g and actu neural into affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance	cal, Electr fracture, v rization: S of crystal ium arsenia n (μTAS): n, cell han ctrostatic s uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysi ces based o	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical msors, etc. ining, surfa Overview aethodologi n literature Pearson Edu	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characterized actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui survey and ication Inte	anical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, μ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCa d/or lab/ind ernational.	ess, strain, l or, insulator city, fluid, al for MEM polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic of following AD, SolidW	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares vorks, Spice	uctor. er, etc. ate, device, s and bioconn g, μ-TAS technology fon, piezoe biosensors ficrosystem GA, etc. ing design s based on e, Ledit etc	packagin ompatibili separatic and PCI electric ar arrays ar s for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing an piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda 2. MEMS New D	Essent ss, tors g Law or ME con col al Ana s, μ -TA ide arr ide a	tial sion s in MS mp aly; AS; ays s s, s	Mechanic n of beam, n Miniatun S: Review ound, galli sis System detection and genet tion: Elea g and actur neural inter affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n, cell han tic screenin ctrostatic s uation, ma erfaces, mi btical biose nicromachi netrology, Design m multiphysi ces based o hang Liu, P	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an ignetic sen icrosurgical ensors, etc. ining, surfa Overview tethodologi ics, MatLat n literature Pearson Edu a and Manu	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui survey and facture, Ta	nanical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoC/ d/or lab/ind ernational. i-Ran Hsu,	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, croelectronic of following AD, SolidW ustry visit	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares vorks, Spice	uctor. er, etc. ate, device, s and bioconn g, μ-TAS technology fon, piezoe biosensors ficrosystem GA, etc. ing design s based on e, Ledit etc	packagin ompatibili separatio and PCl electric ar arrays ar s for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda 2. MEMS New D 3. Micros	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Act ve sen device , tissue n of M ckagin c sign an iphysic r: On : books ations of and N elhi. system	tial sion s in MS mp aly: AS: ays tua sin es, c EN ng: nd (rec Sof 1 //IC De	Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elea g and actur neural inter affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance MEMS, Ch ROSYSTI	cal, Electr fracture, v rization: S of crystal ium arsenia n (μ TAS): n, cell han tic screenin ctrostatic s uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysis ces based o hang Liu, P EM Design	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an agnetic sen icrosurgical msors, etc. ining, surfa Overview aethodologi n literature Pearson Edu	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI b, Intellisui survey and facture, Ta ademic Pul	nanical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoC/ d/or lab/ind ernational. i-Ran Hsu, blishers.	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, croelectronic of following AD, SolidW ustry visit	beam, canti , semicond heat transfe MS, substra- biomaterial ple handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares vorks, Spice	uctor. er, etc. ate, device, s and bioconn g, μ-TAS technology fon, piezoe biosensors ficrosystem GA, etc. ing design s based on e, Ledit etc	packagin ompatibili separatio and PCl electric ar arrays ar s for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silico issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda 2. MEMS New D 3. Micros 4. Fundar	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Act ve sen device , tissue n of M ckagin ckagin cs sign an iphysic r: On : books ations of and N celhi. system nentals	tial sion sion sin MS aly: AS: ays tua sin es, es, cont MIC Def s of	Mechanic n of beam, Miniatun S: Review ound, galli sis System detection and genet tion: Elect g and acturneural inter affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance MEMS, Ch ROSYSTI sign, S. D. Microfab	cal, Electr fracture, v rization: S of crystal ium arsenia n (μTAS): n, cell han tic screenin ctrostatic s uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysi ces based o hang Liu, P EM Design	ical Conce ibration etc icaling in g structure, de, piezoel : Fluid con adling and ng. sensing an gnetic sen icrosurgical onsors, etc. ining, surfa Overview etchodologi ics, MatLat n literature Pearson Edu and Manu Kluwer Ac larc Madou	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz id actuation sing and a l tools, mic ce microm of packag es for MER b, Intellisui survey and facture, Ta ademic Pula, CRC Pres	nanical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCA d/or lab/ind ernational. i-Ran Hsu, blishers. ss, NY.	ess, strain, l or, insulator city, fluid, al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, croelectronic of following AD, SolidW ustry visit	beam, canti , semicond heat transfer MS, substra- piomaterial ole handlir ns for bio and actuati iosensors, delivery, N LIGA, SLI cs, packag g softwares Vorks, Spice	uctor. er, etc. ate, device, s and biocong mg, μ-TAS technology ion, piezoe biosensors ficrosysten GA, etc. ing design s based on e, Ledit etc	packagin ompatibili separatic and PCI electric ar arrays ar s for tissu , techniqu availabilit
Introduction Review of 1 thermal stree Scalim Material for silicon, silicon issues etc. Micro Tota components polynucleot Sensing ar piezoresistiv implantable engineering Fabrication MEMS Pa material, etc MEMS Des Ansys multi Term Pape References 1. Founda 2. MEMS New D 3. Micross 4. Fundar 5. Micross	Essent ss, tors g Law or ME con con al Ana s, μ -TA ide arr nd Act ve sen device , tissue n of M ckagin c. sign an iphysic r: On p books ations of and N velhi. system nentals system	tial sion sion MS mp alys AS: ays sin es, es, EN alys contraction alys	Mechanic n of beam, Miniatum S: Review ound, galli sis System detection and genet tion: Elect g and actur neural inter affolds, op IS: Bulk n MEMS n Software: COMSOL ent advance MEMS, Char Sign, S. D. Microfabi chnology i	cal, Electr fracture, v rization: S of crystal ium arsenio n (μTAS): n , cell han ic screenin ctrostatic uation, ma erfaces, mi otical biose nicromachi netrology, Design m multiphysi ces based o hang Liu, P EM Design . Senturia, M n Chemistr	ical Conce ibration etc Scaling in g structure, de, piezoel : Fluid con adling and ng. sensing an genetic sen- terosurgical ensors, etc. ining, surfa Overview tethodologi- ics, MatLat n literature Pearson Edu and Manu Kluwer Ac farc Madou ry and Life	epts: Mech c, Electrical eometry, for miller indi ectric mart ntrol comp characteriz ad actuation sing and a l tools, mic ce microm of packag es for MEI o, Intellisui survey and facture, Ta ademic Pui l, CRC Pres Sciences, A	nanical: streat l: Conducto orce, electri ices, materi tial, quartz, ponents, µ- zation syst on, thermal actuation, r cro needles achining, li ing of mic MS, study of te, AutoCA <u>d/or lab/ind</u> ernational. i-Ran Hsu, blishers. ss, NY. A. Manz and	ess, strain, l or, insulator city, fluid, f al for MEN polymer, l TAS: samp ems, system sensing a niniature b , and drug of thography, proelectronic of following AD, SolidW ustry visit	beam, canti , semicond heat transfer AS, substra- biomaterial ole handlir ns for bio and actuati iosensors, delivery, M LIGA, SLI cs, packag g softwares forks, Spice	uctor. er, etc. ate, device, s and biocong ng, μ-TAS technology ion, piezoe biosensors ficrosystem GA, etc. ing design based on e, Ledit etc plishing Co	packagin ompatibilit separatic and PCI electric ar arrays ar arrays ar is for tissu , techniqu availabilit mpany Ltc

					AMN1625	5 Plasma '	Fechnology	y			
Designation	l		Elective								
Pre-requisit	es	:	Physics								
Credit and Contact hrs		:	3(L) - 0(1	Γ) – 0(P) –	3(Cr)						
			Theory F	Examinatio	n: (Schem	e) End Sen	nester Exan	n: 50 marks			
•			·			,		n: 25 marks			
Assessment		:				Teacher	Assessmen	t: 25 marks			
Methods			Internal	Assessmen	t: (Scheme	e) 25 marks	(Marks on	the basis o	f assignme	nt submissi	on,
			Surprise '	Tests, Term	paper etc)				-		
			The cour	se would l	be a basic	course in	plasma ph	ysics with	focus on t	echniques	of plasma
Course								ies, single			
Outcomes		·						s to medium		wave comm	unication
			plasma pi	rocessing of	f materials,	laser drive	n fusion an	d magnetic	fusion.		
Modes of			Talk and	chalk, Pow	er noint nre	entations	practical (etc			
Delivery		·			1 1	somations,	practical, v	cit.			
Mapping of	cours	e oi	utcomes wi	ith program	outcomes	1					T
Course	PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome	10	1	102	105	101	105	100	107	100	10)	1010
CO1											
CO2											
CO3											
CO4											
<u>Syllabus</u>											
Basics of p		is:	Plasma as	a state of	matter, D	ebye lengt	h, plasma	frequency,	collisions,	dc condu	ctivity, ac
conductivity			_								
Plasma pro						e, rf disch	harge, phot	o-ionizatio	n, tunnel i	ionization,	avalanche
breakdown,									C 1		
Waves and							e, ion acous	stic wave, s	urface plas	ma wave, 1	onosphere
propagation							1.1	:		4	
Plasma cor											
inhomogene Application											
fusion, mag				m-wave co	minumeau	on, piasina	processing	g or materi	iais, laser a	adiation, la	ser unver
References			011.								
			alasma nhu	sice and co	ntrolled fue	tion FF C	hen Plenu	m Press (10	84)		
								C.S. Liu and		athi World	Scientifi
(1994).			cuomagin			n ocanis an	a piasinas,		а т. п . тпр	aun, wonu	Scientin
		DI	DI ·	NT 4 TT	11 1 / 7			T1 11 (10)	70)		

3. Principles of Plasma Physics, N.A. Krall and A.W. Trivelpiece, Mc Graw Hill (1973).

					CSN***	** Data St	ructures						
Designation		:	Elective										
Pre-requisite	es	:	C program	nming and	Basic of M	athematics							
Credit and Contact hrs		••	2(L) - 0(T	(1) - 2(P) - 2	3(Cr)								
			Theory E	eory Examination: (Scheme) End Semester Exam: 50 marks									
Assessment				Mid Semester Exam: 25 marks									
Methods		:		Teacher Assessment: 25 marks									
Wiethous				ernal Assessment: (Scheme) 25 marks (Marks on the basis of assignment submission,									
				Fests, Term									
				dents Unde	rstood elen	nentary Dat	a organizat	ion, Compl	exity, Revi	sion of Prog	gramming		
Course			concepts	dansta TTa da	ante e i De el	- 0- A .l	V 1.	f)	1 I T : 4		
Course		:					d Knowled		ay, Stack, C	Queue& Lir	iked List		
Outcomes									wahing and	Contina			
							ced Knowle ced Knowle			Sorting			
Modes of									e orupii				
Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practical, e	tc.					
Mapping of	course	e oi	utcomes wi	th program	outcomes								
Course	PO1	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
outcome	ru	L	F02 F03 F04 F03 F00 F07 F08 F09 F010							1010			
CO1	3		2										
CO2	2		2										
CO3	1		2	2 3 2 2 0 2 1 1									
CO4	2		3	3	3	2	1	1	1	1	1		
CO5	2		2	3	3	2	1	1	1	1	1		

UNIT-1: Introduction: Basic Terminology, Elementary Data Organization, Algorithm, Efficiency of an Algorithm, Time and Space Complexity, Asymptotic notations: Theta, Big-O, and Omega, Time-Space tradeoff. Abstract Data Types (ADT)

UNIT-II:Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Application of arrays, Sparse Matrices and their representations. Linked Lists: Array Implementation and Dynamic Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition, Generalized Linked List Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Recursion, Tower of Hanoi Problem, Simulating Recursion, Principles of recursion, Tail recursion, Removal of recursion Queues: Abstract Data Type, Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Deque and Priority Queue.

Unit III:Trees: Basic terminology, k-ary trees, Binary Trees, Binary Tree Representation: Array Representation and Dynamic Representation, Complete Binary Tree, Algebraic Expressions, Extended Binary Trees, Array and Linked Representation of Binary trees, Tree Traversal algorithms: In order, Preorder and Post order, Binary Search Trees, Threaded Binary trees, Traversing Threaded Binary trees, Forest, Huffman algorithm, Heap, B/B+ Tree, AVL tree

Unit IV: Searching& Sorting: Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Bubble Sort, Selection Sort, Insertion Sort, Two Way Merge Sort, Heap Sort, Quick Sort Hashing

UNIT V: Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi list, Graph Traversal: Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Shortest Path algorithm: Dijikstra Algorithm Text Books:

1. Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein —Data Structures Using C and C++||, PHI Reference Books:

- 1. Horowitz and Sahani, -Fundamentals of Data Structures|, Galgotia Publication
- 2. Donald Knuth, —The Art of Computer Programmingl, vol. 1 and vol. 3.
- 3. Jean Paul Trembley and Paul G. Sorenson, —An Introduction to Data Structures with applications^{II}, McGraw Hill
- 4. R. Kruse etal, —Data Structures and Program Design in Cl, Pearson Education Lipschutz, —Data Structures Schaum's Outline Series, TMH

				AMN1	6256 Fatig	ue and Fra	cture of M	laterials			
Designation			Compulse	ory							
Pre-requisite	es		Mechanic	cs of Materi	ials, linear A	Algebra					
Credit and Contact hrs		:	3(L) - 0(T	$(\Gamma) - 0(P) - 2$	3(Cr)						
Assessment Methods		••	Theory E	Examinatio	on: (Schem	Mid Sen	nester Exar	n: 50 marks n: 25 marks t: 25 marks	8		
Course Outcomes		:	 Diffe Role 	erent types of mechani	ent will lea of deformat ical propert technique	ion and me ies in desig	ning.	1			
Modes of : Talk and chalk, Power point presentations, and practical etc. Delivery : Talk and chalk, Power point presentations, and practical etc.											
Mapping of	Mapping of course outcomes with program outcomes										
Course	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10

outcome	POI	PO2	PO3	PO4	PO5	PO6	PO/	PO8	PO9	POI0
CO1				\checkmark						
CO2				\checkmark						
CO3										

<u>Syllabus</u>

Overview: Different responses of material to loading, material properties, macroscopic experiments and its relevance, physical mechanisms controlling the behavior.

Elasticity: Atomic structure and bonding, atomic interaction, physical origin of elastic modulus, Generalized Hooke's law, orientation dependence of elastic modulus.

Plasticity: Theoretical shear strength of crystals, Point, line and volume defects, edge and screw dislocations, Burgers circuit and Burger's vector, force between dislocations, movement and interactions of dislocations, slip planes, twinning, strengthening mechanisms, work hardening, grain boundary strengthening and solid solution strengthening, true stress-strain curve, necking phenomenon, yield criteria, plastic stress- strain relationships.

Viscoelasticity and viscoplasticity: Responses of viscoelastic materials under different loading, creep and relaxation, Maxwell and Kelvin models.

Creep and Fracture: Primary, secondary and tertiary creep, creep mechanisms, dislocation creep, diffusion creep and grain boundary creep, creep laws, Analysis and Applications in Design. Brittle, ductile and fatigue fracture, fracture surfaces, Griffith's theory, modes of fracture, energy release rate, stress intensity factor, crack tip plasticity, J-integral and Crack Tip Opening Displacement

Fatigue: Cyclic loads, constant amplitude and variable amplitude loads, cycle counting techniques, infinite life, safelife, fail-safe, damage-tolerant design philosophies, Low cycle and high cycle fatigue, Stress-Life approach, Strain-Life approach and Fracture mechanics approach, Cumulative damage theories.

Mechanical Characterization of Materials: Mechanical testing for material Characterization, Measurement techniques in experimental solid mechanics, Non-destructive testing

- 1. Norman E. Dowling, Mechanical behavior of materials: Engineering Methods for Deformation, Fracture and Fatigue, Prentice Hall.
- 2. Marc Meyers and Krishnan K. Chawla, Mechanical behavior of materials, Cambridge University Press.
- 3. William F. Hosford, Mechanical behavior of materials, Cambridge University Press.
- 4. Thomas H. Courtney, Mechanical behavior of materials, Overseas Press.
- 5. Joachim Roesler, Harald Harders, and Martin Baeker, Mechanical Behavior of Engineering Materials, Springer.
- 6. Prashant Kumar, Elements of fracture mechanics, Tata McGraw Hill.
- 7. S. Suresh, Fatigue of Materials, Cambridge University Press
- 8. RW Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons.
- 9. D. Hull, DA Bacon, Introduction to dislocations, Pergamon.
- 10. G. E. Dieter, Mechanical Metallurgy, McGraw Hill.

				AMN	16257 Cont	tinuum Da	mage Mec	hanics					
Designation		:	Elective										
Pre-requisite	es	:	Physics										
Credit and Contact hrs		:	3(L) - 0(T	(P) - 0(P) - 3	B(Cr)								
Assessment Methods		:	Theory E	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks									
Course Outcomes		:	 Identi Apply 	ify stresses	acting on c on and dam	omponents	subjected ots for prac	practical ap to complex tical situations.	loads				
Modes of Delivery		:	Talk and	chalk, Pow	er point pre	sentations,	practical, e	etc.					
Mapping of	cours	e o	utcomes wi	th program	outcomes					-	-		
Course outcome	PO	1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10										
CO1					\checkmark								
CO2													

CO4 Syllabus

CO3

Essentials of Continuum mechanics: Tensorial notation, stress, strain, invariants, equilibrium equations, Domain and validity of continuum damage mechanics, concept of representative volume element.

Phenomenological aspects of damage: Damage, measurement of damage, modeling of damage through effective area reduction, void volume fraction and stiffness reduction, representation of damage through different orders of tensors, concept of effective stress, hypothesis of strain equivalence, strain energy equivalence, and complementary strain energy equivalence.

Thermodynamics of damage: State variables, damage as state variables, first and second law of thermodynamics, thermodynamics potentials, dissipation potentials, constitutive equations, evolution equations.

Kinetic Laws of Damage Evolution: Unified formulation of damage laws, damage laws for brittle, quasi-brittle, ductile, creep, low cycle and high cycle fatigue. Damage Analysis of Structures: Implementation of isotropic damage theory, case studies from literature.

- 1. A Course on damage mechanics: Jean Lemaitre.
- 2. Continuum damage mechanics: S. Murakami.
- 3. Mechanics of solid materials: Jean Lemaitre and J. L. Chaboche.
- 4. An Introduction to damage mechanics: L. M. Kachanov.
- 5. Damage mechanics with finite elements: P. I. Kattan and G. Z. Voyiadjis.
- 6. Damage mechanics: Dusan Krajcinovic.
- 7. Damage mechanics: George Z. Voyiadjis and Peter I. Kattan.

				AM	N16258 Ph	ysical Che	mistry of S	steels			
Designation		:	Elective								
Pre-requisite	es	:	Chemistr	у							
Credit and Contact hrs		:	3(L) - 0(1	$(\Gamma) - 0(P) - 2$	3(Cr)						
Assessment Methods		• •	Internal		t: (Scheme	Mid Sen Teacher e) 25 marks	nester Exan Assessmen	a: 50 marks n: 25 marks t: 25 marks the basis o		nt submissi	on,
Course Outcomes		:		essful stud							
Modes of Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practical, e	etc.			
Mapping of	cours	e oi	utcomes wi	th program	outcomes						
Course outcome	PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2			\checkmark								
CO3											
CO4											
Syllabus Physico-che Ionic slag th										gas metal	reaction in

pneumatic steel melting processes.

Genesis of modern combine blowing technique of steel production. Refining mechanism in oxygen steel making process. Electric arc furnace steel making for high alloy steels.

De-oxidation, degasification and decarburization-different techniques of vacuum degassing, AOD, VOD, CLU and MRP processes.

References books

1.Physical Chemistry of Iron and Steel Manufacture, Author- C. Bodsworth

2. Making, Shaping and Treating of Steel.

3. Ferrous Process Metallurgy, Author- J.L. Bray

4. An Introduction to Physical Chemistry of Iron and Steel Making, Author- R.G.Ward

5. The Physical Chemistry of Liquid Steel in Electric Furnace Steelmaking, Author- J.F Elliot

6. Iron Making And Steel Making- Theory and Practice, Author - A. Ghosh and A. Chattrjee..

				A	AMN17255	Advance	l Manuf	acturing			
Designation	l	:	Elective								
Pre-requisite	es	:	Nil								
Credit and Contact hrs		:	3(L) - 0(T) – 2(P) –	- 4(Cr)						
Assessment Methods		:	Mid Sem	Part: lester Exar lester Exar Assessmer	n: 20%			Practical Par End Semeste Teacher Ass	er Exam: 1	- / -	
Course Outcomes		:	CO1 Des CO2 Pre CO3 Cla manufac CO4 Uno	scribe the r pare CAD ssify and e turing syst derstand th	need and ap model, mo evaluate the em	plications del slicing, relative m ed additive	of additiv tool path erits and manufac	Il be able to ve manufactur n using differe demerits of li turing technic	ent software quid and so		dditive
Modes of Delivery		:	Talk and	chalk, Pov	wer point p	resentation	s, and pr	actical etc.			
Mapping of	cours	e o	utcomes w	ith program	n outcome	8					
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
CO4						\checkmark					
CO5											
Characteriza Compaction	ation and (Me Cor	thods -Cl solidation	nemical C ; Densifica	omposition ation and S	and Stru izing; Imp	cture, P regnatior	, Electrolytic, article Size and Infiltrati	and Surfaction; Sinteri	ce Topogra	aphy; Powde tate Sintering

Compaction and Consolidation; Densification and Sizing; Impregnation and Infiltration; Sintering-Solid-State Sintering; Non-Isothermal Sintering; Liquid-State Sintering; Super Solidus Sintering; Activated Sintering; Pressure-Assisted Sintering.

Overview – History – Need-Classification -Additive Manufacturing Technology in product development-Materials for Additive Manufacturing Technology – Tooling – Applications.

Reverse Engineering: Basic Concept – Digitization techniques – Model Reconstruction – Data Processing for Additive Manufacturing Technology: CAD model preparation – Part Orientation and support generation – Model Slicing – Tool path Generation – Softwares for Additive Manufacturing Technology: MIMICS, MAGICS.

Classification – Liquid based system – Stereo lithography Apparatus (SLA)- Principle, process, advantages and applications - Solid based system –Fused Deposition Modeling - Principle, process, advantages and applications, Laminated Object Manufacturing

Selective Laser Sintering – Principles of SLS process - Process, advantages and applications, Three Dimensional Printing - Principle, process, advantages and applications- Laser Engineered Net Shaping (LENS), Electron Beam Melting.

Customized implants and prosthesis: Design and production. Bio-Additive Manufacturing- Computer Aided Tissue Engineering (CATE) – Case studies

List of experiments

- 1. AM Pre-processing and Post-processing
- 2. 3D Modelling of a single component. Assembly of CAD modelled Components
- 3. Exercise on CAD Data Exchange. Generation of .stl files.
- 4. Identification of a product for Additive Manufacturing and its process plan.
- 5. Printing of identified product on an available AM machine.
- 6. Post processing of additively manufactured product.
- 7. Inspection and defect analysis of the additively manufactured product.

- 1. Ghosh and Mallik, Manufacturing Science, East-West Press Pvt Ltd.
- 2. Brent Stucker, David Rosen, and Ian Gibso, Additive Manufacturing Technologies, Springer, 2010
- 3. Chua C.K., Leong K.F., and Lim C.S., Rapid prototyping: Principles and applications, Third Edition, World Scientific Publishers, 2010
- 4. Gebhardt A., Rapid prototyping, Hanser Gardener Publications, 2003.
- 5. Kamrani A.K. and Nasr E.A., Rapid Prototyping: Theory and practice, Springer, 2006.

				AM	N17256 Th	in Films a	nd Ap	plica	tions			
Designation		:	Elective					-				
Pre-requisite		:	Physics									
Credit and		-										
Contact hrs		:	3(L) - 0(T)	(P) - 2(P) - 4	4(Cr)							
Contact his			Theory Pa	art				Pra	ctical Part:			
Assessment				ester Exam:	40%				l Semester I	Fxam· 15%		
Methods		:		ester Exami					cher Assess			
Methods				Assessment				1 cu		inent: 1570		
				essful stud		nrn:						
						of thin film	S.					
Course								chnia	ues of nano	-thin films.		
Outcomes		:							ctured thin t			
									terization of		ctured thin	films for
				tic applicat		~J						
Modes of												
Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practi	cal, e	etc.			
Mapping of	cours	e oi	utcomes wi	th program	outcomes							
Course						D07	D		D07	DOO	DOO	DO10
outcome	PO	I	PO2	PO3	PO4	PO5	PC)6	PO7	PO8	PO9	PO10
CO1				\checkmark			1	/				
CO2							١	/				
CO3												
CO4												
Syllabus												•
 Deposit To depo To mea Anneali Study o Prepara 	of T leposit zation Profi of Thi of Thi of Tli s, etc. Silico hnica f diele ale Mo model riment ting o ion of posit po sure D ng stu f com tion o	hin of lom in F hin b b l iss ctri ode ing ts: f a the lyn O.C. idy pos f th	Films: So , Ion impla Thin Film neter, etc. Films: Strue Films: Ap ased Thin sues, CVD ic films, Ne ling: Intro , and Depos poly thin fi ner thin film resistivity of thin film ition variat e Metal Ox	ntation, Ca s: X-ray di ctural, Elec plication of Film: Epita of silicon ew depositi- duction, Co sition exam lm on glass thin film of of thin film at differe ion in syntl ide thin filh	thodic are of ffraction, U trical, Mag thin films axy by CVI dioxide - C on technolo omponents ples. substrates on glass sub oating techn by four Pr nt tempera nesis of thin ns by using	deposition, JV-vis spea netic, Optio in differen D - Process Overview o ogies, and F of etch and ostrates by s nique robe metho ture	Pulsed ctrosco cal, Th t areas , Reac f atmo Future I depo spin co d	d lase ppy, ¹ eerma s such tor, E psphe direc sitior	er deposition Squid, Four al, etc. a as - Electro Equipment, 7 eric pressure etions. a modeling, g method	n, Molecula probe resist onics, Med Theory of C CVD, Pla	ur beam epi stivity, Ato ical, Defen CVD, Defec sma enhan	taxy, etc. mic probe se, Sports, cts, Safety, ced CVD,
References	books	5				•		-1				
						demic Pres						
						nd Techniq	ues Pi	rincip	oles, Method	ls, Equipm	ent and Ap	plications,
				Publicatio								
				L. Chopra, 1					~ -	• · · ·	~ =	
4. Nanost	ructur	es a	and Nanom	aterials: Sy	nthesis, Pro	operties and	1 Appl	licatio	ons, G. Cao	, Imperial (College Pre	SS.

					AMN1725	57 Powder	Metal	lurgy				
Designation		:	Elective									
Pre-requisite	es	:	Nil									
Credit and		:	3(L) - 0(T	$(\Gamma) - 2(P) -$	4(Cr)							
Contact hrs					· · /			D	· 1.D. /			
			Theory Pa	art: ester Exam	. 100/				tical Part	Exam: 15	0/	
Assessment Methods		:		ester Exam						ssment: 15		
Methous				Assessment				Teat	LIICI ASSC	ssment. 15	70	
				essful stud		arn•						
						ann. metal/allog	nowc	ler fal	rication t	echniques		
Course						vder particl		ici iu	Jie ation t	cenniques		
Outcomes		:						liffere	ent powde	r compacti	on techniqu	ies
oucomes											ent sintering	
				bricate P/M					r r			,
Modes of					•	•	1		1 .			
Delivery		:	Talk and	chalk, Pow	er point pr	esentations	, and p	ractic	al etc.			
Mapping of	cours	e oi	utcomes wi	ith program	n outcomes							
Course	PO1		PO2	PO3	PO4	PO5	PO6		PO7	PO8	PO9	PO10
outcome	PUI		PO2	P05	P04	PO5	PU0)	PO/	P08	P09	P010
CO1												
CO2							1	\checkmark				
CO3							١	\checkmark				
CO4												
					1:Slightly 2	2:Moderate	ly 3:Su	ıbstan	tially			
<u>Syllabus</u>												
Introduction	: scop	be o	f powder n	netallurgy,	characteriz	ation of me	etal po	wders	, physical	properties	-particle siz	ze and
shape detern	ninati	on,	technologi	cal propert	ies-apparer	nt density, f	ap den	sity, g	green dens	sity, sintere	ed density, f	flow rate
etc.												
Powder man												
compaction				consolidat	ion techniq	jues like ho	t press	ing (H	IP), hot is	o-static pr	essing (HIP), spark
plasma sinte												
Sintering: sc												es.
Sintering the												
Powder meta								, refra	ictory met	ais, contac	t materials,	magnetic
materials, str Experiments								onar	to maina -	oudor mot	alluray	
References				on, charact	enzation al	nu testing 0		Jonen	is using p	owder met	anurgy	
1. R.M. Ger			vder Matall	luray Soion	ce Matal I	Powder Ind	netrian	Feder	ration Dri	nceton M	W IARON	
2. M.N. Rah											w JUISCY	
2. M.N. Kan 3. G.S. Upac										Publishing	J	
			er Metallur				mem			- 4011311112	>	

			AMN17	258 Corro	sion Scienc	e and Eng	ineering					
Designation	:	Elective										
Pre-requisites	3 :	Chemistr	y and Intro	duction to N	Material Sci	ence.						
Credit and Contact hours	s :	3(L) - 0(T	$(\Gamma) - 0(P) - 1$	3(Cr)								
Assessment Methods	:	Theory F	Theory Examination: (Scheme) End Semester Exam: 50 marks Mid Semester Exam: 25 marks Teacher Assessment: 25 marks The successful student will learn:									
Course Outcomes	:	1. Can i 2. Can i 3. Can a	essful stud identify pot understand able to dem able to desi	ential of co the causes onstrate eco	rrosion and of and the r onomics as	nechanisms sociated wi	s of various th corrosion	1.	prrosion.			
Modes of Delivery	:	Talk and	chalk, Pow	er point pre	esentations,	Practical, e	etc.					
Mapping of co	urse o	utcomes wi	ith program	outcomes								
Course outcome	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1												
CO2												
CO3												
CO4												
Syllabus		•		•	•	•	•	•		•		

Basics of Corrosion: Introduction, Classification, Economics, EMF series, Galvanic series, Corrosion theories, Derivation of potential - current relationships of activation controlled and diffusion-controlled corrosion processes, Potential - pH diagrams, Fe-H₂O system, Application and limitations.

Type of Corrosion: Broad forms of corrosion – uniform, uneven, pitting, cracking, etc. Various types of corrosion along with case studies - Galvanic, Thermogalvanic, High temperature corrosion, Intergranular, Pitting, Selective attack (leaching), Fretting corrosion - erosion, Cavitation, Stress corrosion cracking, Hydrogen embrittlement, etc.

Atmospheric Corrosion and Protective Coatings: Atmospheric corrosion, Factors influencing atmospheric corrosion, Temporary corrosion preventive methods - organic coating, surface preparation, natural, synthetic resin, paint formulation and applications, Paint testing and evaluation, Selection of material, Fabrication process for corrosion control, Role of residual stress, Changes in operating conditions

Immersion Corrosion and Electrochemical Protection: Corrosion in immersed condition - Effect of dissolved gases, salts, pH, temperature and flow rates on corrosion; marine corrosion, Underground corrosion - Corrosion process in the soil, factors influencing soil corrosion, Biological corrosion - Definition, mechanism of biological corrosion control of bio corrosion, Electrochemical methods of protection - Theory of cathodic protection, design of cathodic protection, sacrificial anodes, impressed current anodes, Anodic protection, Corrosion inhibitors for acidic, neutral and alkaline media.

Advances in Corrosion: Corrosion resistant coatings, Alloying for corrosion resistance, Case studies, etc.

- 1. Fundamentals of Electrochemical Corrosion, E. E. Stansbury and R. A. Buchanan, ASM International.
- 2. Corrosion Engineering, M. G. Fontana and N. D. Greene, McGraw-Hill.
- 3. Corrosion and Corrosion Control: An Introduction to corrosion Science and Engineering, R. W. Revie and H. H. Uhlig, John Wiley & Sons.
- 4. Corrosion - For Students of Science and Engineers, R. Trethewey and J. Chaberlain, Longman Sc & Tech.
- Principles and Prevention of Corrosion, D. A. Jones, Longman Scientific & Technical, John Wiley, Macmillan Pub 5. Co.

					AMN	17259 Trik	ology				
Designation		:	Elective								
Pre-requisite	es	:	Structure	of Materia	ls						
Credit and Contact hrs		:	3(L) - 0(T	(P) - 0(P) - 1	3(Cr)						
contact his			Theory E	xaminatio	n: (Schem	e) End Sem	ester Exan	n: 50 marks			
					. (n: 25 marks			
Assessment		:				Teacher .	Assessmen	t: 25 marks			
Methods			Internal	Assessmen	t: (Scheme	e) 25 marks	(Marks on	the basis of	f assignmei	nt submissi	on,
	Surprise Tests, Term paper etc) The successful student will learn:										
						n, wear and					
Course			To acquir	e knowledg	ge on surfac	ce coatings	and measur	rements.			
Outcomes		:	1 4	h a 1-m a1 a d	las of with a	1					
				the types		logy in indu	istries				
						measuring	instrument	ts			
Modes of											
Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	practical, e	etc.			
Mapping of	cours	e oi	utcomes wi	th program	outcomes						
Course	PO		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome	rU	1	FO2	FUS	F04	FOJ	FU0	F07	FUð	F09	FOID
CO1				√							
CO2				√							
CO3							N		N		N
CO4				N							
<u>Syllabus</u> Tribology	dafin	:+:-	n Induction	1 significant		nia conceta	tranda Ea	atom influe	naina		
Tribological										narameters	
Genesis of f											
Stick-slip fri											
Wear and w											
fretting, etc.											
influence in											
Introduction									bology. Co	ating chara	acteristics,
Coating perf Surface topo									manta		
Laser metho										and erosio	n test Use
of transduce						ronnig com		igue iest, so	na particie		li test, Ose
References					1						
1. Hulling ,)"Princin	oles of Trib	ology", Ma	cMillan, 19	984.				
2. Williams	J.A . '	"En	gineering 7	Fribology",	Oxford Ur	niv. Press, 19	994.				
3. Neale M.											
4. I.M. Hutc	-									92.	
5. G. W. Sta											
6. K.C. Lude											
7. Bharat Bh	nushar	1, "	Nanotribol	ogy and Na	nomechani	cs: An Intro	bauction",	Springer, 20	JU8.		

Designation				A	MN17260	Life Cycl	e Assessme	nt			
		:	Elective								
Pre-requisit	es	:	Materials	in Service							
Credit and Contact hrs		:	3(L) - 0(1	(P) - 0(P) - 0(P)	3(Cr)						
Assessment Methods		:	Theory E	Examinatio	on: (Schem	Mid Ser	nester Exan mester Exar Assessmen	n: 25 mark	s		
Course Outcomes		:	 The binclud The finduce The finduce 	basic conce ding the so fundamenta ms, sustain	cial and eco al concepts ability chal	cycle asses onomic din related to llenges faci	sment (LCA nensions. interaction ing the current ent methodo	of industri ent generat	al and env	ironmental	/ ecological
Modes of Delivery		:				esentations	, and praction	cal etc.			
Mapping of	course	e oi	itcomes wi	th program	outcomes	1					
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2							\checkmark				
CO3											
Syllabus 1. Introduc life cycle	e asses	sm	ent, Övervi	ew of Inter	national St	andards IS	√ f LCA for t O 14044 (20				
 Syllabus Introduc life cycle ther relet Introduc ELCD, 4 Introduc the struc Expectat and Mon Limitatic Sustaina productio in-situ le Ferroallo LCA of Introduc embodie 	e asses vant gu tion to AusLC ing ex- ture of tion fro- nte Ca ons of bility i on, Re eaching oys, LC variou tion to ed wate	sm uide Lif I, I am rlo an rlo an cyc g m CA us c wa er	ent, Övervi elines, Env. e cycle ass ndian LCI ole system, LCA mod the basic re analysis, I LCA. esources in ling of mat ining metho for gold pr energy syst tter manago of product	ssessment ew of Inter ironmental essment so databases, data colled el, perform sults, Inver interpreting adustries, e terials, E-w od, iron ore oduction, <i>A</i> tems (coal- ement and s. Introduc	(LCA), Impact cate impact cate ftware- Sin Data qualit ction templ ing a calcu ntory and in g the result nergy, mini- vaste process , copper or Aluminium based elec ISO-14046 ction to IS	andards IS egories in I naPro, GaE y considera ates for inp lation, basi npact categ s and their ing and mi ssing issues e, and baux and compa ctricity, gas for life cy O-14001 I	f LCA for t O 14044 (20 LCA. Bi, and Oper- ations, The put in LCA ic procedure gories and as r meaning, neral proce s. Uses of L tite processi arison of pro- s powered p cle-based w	he Enginee 206), Four In LCA, LC steps invol software, i es behind t ssessment, Implicatio ssing, Sust CA in cass ng. LCA for oduction us power plan vater footp tal Manag	ering profe major stag A database ved in carr nputting da he calculat Contributions and stre cainability e studies- of or steel main sing various nts, nuclea rint determ gement Sys	es or steps es- EcoInve ying out ar ata into LC ion. on analysis ength of L in the conte open-cut, u king and ste s energy so r, solar, w ination and stem (EMS	of LCA and ent, US LCI a LCA. A software , Sensitivity CA studies ext of meta nderground eel industry purces. ind, hydro) I concept o
 Syllabus Introduc life cycle ther relev Introduc ELCD, A Introduc the struc Expectat and Mon Limitatio Sustaina production in-situ le Ferroallo LCA of Introduc embodie procedur 	e asses vant gu tion to AusLC ing ex- ture of tion fronte Ca ons of bility i on, Re eaching oys, LC variou tion to d water res and	sm uide Lif I, I am an rlo an rlo an cyc g m CA us e us e us e	ent, Övervi elines, Env. e cycle ass ndian LCI ole system, LCA mod the basic re analysis, I LCA. esources in ling of mat ining metho for gold pr energy syst tter manago of product	ssessment ew of Inter ironmental essment so databases, data colled el, perform sults, Inver interpreting adustries, e terials, E-w od, iron ore oduction, <i>A</i> tems (coal- ement and s. Introduc	(LCA), Impact cate impact cate ftware- Sin Data qualit ction templ ing a calcu ntory and in g the result nergy, mini- vaste process , copper or Aluminium based elec ISO-14046 ction to IS	andards IS egories in I naPro, GaE y considera ates for inp lation, basi npact categ s and their ing and mi ssing issues e, and baux and compa ctricity, gas for life cy O-14001 I	f LCA for t O 14044 (20 LCA. Bi, and Operations, The pout in LCA ic procedure gories and as r meaning, neral proce s. Uses of L cite processi arison of pro- s powered p cle-based w	he Enginee 206), Four In LCA, LC steps invol software, i es behind t ssessment, Implicatio ssing, Sust CA in cass ng. LCA for oduction us power plan vater footp tal Manag	ering profe major stag A database ved in carr nputting da he calculat Contributions and stre cainability e studies- of or steel main sing various nts, nuclea rint determ gement Sys	es or steps es- EcoInve ying out ar ata into LC ion. on analysis ength of L in the conte open-cut, u king and ste s energy so r, solar, w ination and stem (EMS	of LCA and ent, US LCI a LCA. A software , Sensitivity CA studies ext of meta nderground eel industry purces. ind, hydro) I concept o
Syllabus1. Introduclife cyclether relev2. IntroducELCD, A3. Introducthe struca. Expectatand MonLimitation4. Sustainanproductionin-situ leFerroallo5. LCA ofIntroducembodieprocedurReferences	e asses vant gu tion to AusLC ing ex- ture of tion fron tion fron tion fron bility i on, Re eaching boys, LC variou tion to d water res and books	sm uide Lif I, I am f an rlo an in r cyc g m CA is e us e us e l gu	ent, Övervi elines, Env. e cycle ass ndian LCI o ple system, LCA mod the basic re analysis, I LCA. esources in ling of mar- ining methor for gold pr energy syst ater manage of product idelines to	ssessment ew of Inter ironmental essment so databases, data colled el, perform sults, Inver interpreting dustries, et terials, E-w od, iron ore oduction, A tems (coal- ement and s. Introduc develop El	(LCA), Imp national St impact cata ftware- Sin Data qualit ction templ ing a calcu nory and in g the result nergy, mini- vaste process copper or Aluminium based elec ISO-14046 ction to IS MS docume	andards IS egories in I naPro, GaE y considera ates for inp lation, basis npact categ s and their ing and mi ssing issue e, and baux and compa tricity, gas for life cy O-14001 H ents accord	f LCA for t O 14044 (20 LCA. Bi, and Operations, The but in LCA ic procedure gories and as r meaning, neral proce s. Uses of L tite processi arison of pro- s powered p cle-based w Environmen ling to ISO.	he Enginee 206), Four h LCA, LC steps invol software, i es behind t ssessment, Implicatio ssing, Sust CA in case ng. LCA for oduction us power plan vater footp tal Manag PDCA in	ering profe major stag A database ved in carr nputting da he calculat Contributions and stre ainability f e studies- of or steel mal sing variounts, nuclea rint determ gement Syst the context	es or steps es- EcoInve- ying out ar ata into LC ion. on analysis ength of L in the conto pen-cut, u king and sta s energy so r, solar, we ination and stem (EMS c of EMS	of LCA and ent, US LCl a LCA. A software , Sensitivity CA studies ext of meta nderground eel industry purces. ind, hydro) l concept o
Syllabus1. Introduclife cyclether releve2. IntroducELCD, A3. Introducthe struca. Expectatand MonLimitation4. Sustainanproductionin-situ leFerroallo5. LCA ofIntroducembodieprocedurReferences1. Heinric	e asses vant gu tion to AusLC ing ex- ture of tion fronte Ca ons of bility i on, Re eaching oys, LC variou tion to d water res and books hs, H.,	sm uide Lid I, I amp an om om om om om cyc g m CA in r cyc g m CA is e i gu <u>s</u> om om om om om om om om om om	ent, Övervi elines, Env. e cycle ass ndian LCI o ple system, LCA mod the basic re analysis, I LCA. esources in ling of mar- ining methor for gold pr energy syst ater manage of product idelines to artens, P., I	ssessment ew of Inter ironmental essment so databases, data colled el, perform sults, Inver interpreting dustries, et terials, E-w od, iron ore oduction, A tems (coal- ement and s. Introduc develop El Michelsen,	(LCA), Imp national St impact cata ftware- Sin Data qualit ction templ ing a calcu nory and in g the result nergy, mini- vaste proces c, copper or Aluminium based elec ISO-14046 ction to IS MS docume G., Wiek,	andards IS egories in I naPro, GaE y considera ates for inp lation, basi npact categ s and their ing and mi ssing issue e, and baux and compa tricity, gas for life cy O-14001 H ents accord	f LCA for t O 14044 (20 LCA. Bi, and Oper- ations, The put in LCA ic procedure gories and as r meaning, neral proce s. Uses of L tite processi arison of pro- s powered p cle-based w	he Enginee 206), Four h LCA, LC steps invol software, i es behind t ssessment, Implicatio ssing, Sust CA in case ng. LCA fo oduction us power plan vater footp tal Manag <u>PDCA in</u> nce An Int	ering profe major stag A database ved in carr nputting da he calculat Contributions and stre ainability e studies- of or steel mal sing variounts, nuclea rint determ gement Syst the context roduction,	es or steps es- EcoInve- ying out ar ata into LC ion. on analysis ength of L in the conto pen-cut, u king and sta s energy so r, solar, we ination and stem (EMS c of EMS Springer.	of LCA an ent, US LC. A software , Sensitivit CA studies ext of meta nderground eel industry purces. ind, hydro l concept o

			AM	N17261 C	ritical Mi	nerals and	Supply Ch	nain of Mat	terials		
Designation		:	Elective								
Pre-requisite	es	:	Introduct	ion to Mat	erials Engi	ineering					
Credit and Contact hrs		••	3(L) - 0(T	Γ) – 0(P) –	- 3(Cr)						
Assessment Methods		••	Theory F	Examinati	on: (Schei	Mid Se	emester Exa	ım: 50 mark am: 25 marl nt: 25 mark	KS .		
Course Outcomes		:	 To id To de opera 	lentify signed evelop an ations.	understand	f Critical N ing of the i	mportance of	of logistics			upply chain tionship.
Modes of Delivery		:	Talk and	chalk, Pov	wer point p	resentation	s, and pract	tical etc.			
Mapping of	cours	e o	utcomes wi	ith program	n outcome	S					
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3				\checkmark			\checkmark		\checkmark		
<u>Syllabus</u>											

An overview of the principles of classification and assessment of critical metals and minerals and their application globally

The supply of critical metals and minerals.

The mineralogy of critical metals, the metallogenetic context of present and near-future deposit types for critical metals and minerals.

Deposit classification and distribution. Problems surrounding substitution and recycling potential.

Supply chain strategy: strategic fit, network design, global dual sourcing

Managing supply chain risks: risk-sharing contracts, risk pooling, risk hedging

Coordinating supply chain: sales & operations planning, bullwhip effect

Individual student projects focused on certain types of critical metal and mineral deposits, their character and origin, and include evaluating their present and future potential.

References books

1. Keith Liverman, Metals and Minerals: Science and Technology, NY Research Press 2017

- 2. Gus Gunn, Critical Metals Handbook (Wiley Works), American Geophysical Union, 2014
- 3. Supply Chain Management: Strategy, Planning, and Operations (5th Edition) by Sunil Chopra and Peter Meindl. Prentice Hall, 2012
- 4. Operations Strategy: Principles and Practice by Jan A. Van Mieghem. Dynamic Ideas, 2008.

					AMN1	7262 Nano	o-Fiulas				
Designation	L	:	Elective			-					
Pre-requisite	es	:	Fluid Me	chanics							
Credit and Contact hrs		:	3(L) - 0(7	$(\Gamma) - 0(P) - 0(P)$	3(Cr)						
Assessment Methods		:	Theory B	Examinatio	on: (Schem		nester Exan	n: 25 marks	5		
							Assessmen	t: 25 marks			
Course 1. Understand the fundamental properties and synthesis methods of nanofluids. Outcomes 2. Analyze the thermophysical properties of nanofluids and their impact on heat transfer. 3. Evaluate the suitability of nanofluids for various engineering applications. 4. Conduct experimental procedures to measure key properties of nanofluids. 5. Explore emerging trends and research directions in the field of nanofluids.									sfer.		
Modes of Delivery		:	Talk and	chalk, Pow	er point pre	esentations,	and practic	cal etc.			
Mapping of	course	e oi	utcomes wi	ith program	outcomes						
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1											
CO2											
CO3											
Syllabus Introductio and their pro- techniques,	opertie Surfac	es, ce n	Synthesis of nodification	of Nanoflui n of nanopa	ids, Prepara articles.	ation metho	ds (single-	step and tw	vo-step), St	ability and	dispersion
Syllabus Introductio and their pro	opertic Surfac of N: Optical ic prop I Mode 's tw nt metl sfer & s, App s and e nal en nts), & Ine Imagin ductio in wa and F	es, ce n and pert els o-p hod z En lica elec erg dus ng n (stev Fut	Synthesis of nodification ofluids: The d Electrical ies). and Exper- hase models, Particle nergy App ations in she etronic cool y systems) trial Appl and Diagne (Nanofluids) water treatri ure Trends	efinition an of Nanoflui n of nanopa hermophys l Properties rimental T lel), Exper size and ze blications of nell and tub ling system), Nanoflui ications of ostics (Nar s as lubric ment, Chen s: Challeng	d history of ids, Prepara articles. ical Propers s (Optical p echniques: timental T ta potential of Nanoflu be heat exc as), Renewa ids in Nuc Nanofluids in tants, Tribo nical reactions ges in Nanofluid	tion metho rties (Therr roperties an Theoretica echniques analysis). ids: Nanof hangers), C able Energy lear Reacto S: Drug De MRI and C ological pro on enhancer fluid Appli	, Types of r ds (single- mal condu nd applicati d Models (I (Measuren luids in He Cooling of 1 Systems (Cors (Role i elivery Syst CT imaging operties), E ment). cations (Sta	hanoparticle step and tw ctivity, Vis ons in sola Maxwell's m hent of th eat Exchang Electronic Nanofluids n coolant ems (Targe g, Contrast Environmen	es used in r ro-step), St scosity, D r energy, F model, Han nermal co gers (Heat Devices (N in solar co systems, S ted drug d enhancem tal and C agglomera	ability and ensity, Spe Electrical co milton-Cros nductivity, transfer en Aicrochann bllectors, A Safety and elivery, Hy ent), Lubri hemical A tion issues,	dispersion ecific heat onductivity sser model. Viscosity hancement el cooling, pplications efficiency perthermia cation and pplications Economic
Syllabus Introductio and their pro- techniques, F Properties capacity), O and dielectri Theoretical Buongiorno measuremer Heat Transs mechanisms Data centers in geotherm improvemer Biomedical treatment), I Friction Re- (Nanofluids Challenges and environ- ongoing rese	opertia Surfac of Na Optical ic prop I Mod 's tw nt meth sfer & s, App s and c nal en nts), & In (Imagin ductio in wa and F menta earch)	es, ce n and pert els o-p hod z En lica elec erg dus ng n (stev Fut	Synthesis of nodification ofluids: The d Electrical ies). and Exper- hase models, Particle nergy App ations in she etronic cool y systems) trial Appl and Diagne (Nanofluids) water treatri ure Trends	efinition an of Nanoflui n of nanopa hermophys l Properties rimental T lel), Exper size and ze blications of nell and tub ling system), Nanoflui ications of ostics (Nar s as lubric ment, Chen s: Challeng	d history of ids, Prepara articles. ical Propers s (Optical p echniques: timental T ta potential of Nanoflu be heat exc as), Renewa ids in Nuc Nanofluids in tants, Tribo nical reactions ges in Nanofluid	tion metho rties (Therr roperties an Theoretica echniques analysis). ids: Nanof hangers), C able Energy lear Reacto S: Drug De MRI and C ological pro on enhancer fluid Appli	, Types of r ds (single- mal condu nd applicati d Models (I (Measuren luids in He Cooling of 1 Systems (Cors (Role i elivery Syst CT imaging operties), E ment). cations (Sta	hanoparticle step and tw ctivity, Vis ons in sola Maxwell's m hent of th eat Exchang Electronic Nanofluids n coolant ems (Targe g, Contrast Environmen	es used in r ro-step), St scosity, D r energy, F model, Han nermal co gers (Heat Devices (N in solar co systems, S ted drug d enhancem tal and C agglomera	ability and ensity, Spe Electrical co milton-Cros nductivity, transfer en Aicrochann bllectors, A Safety and elivery, Hy ent), Lubri hemical A tion issues,	dispersion ecific heat onductivity sser model, Viscosity hancement el cooling, pplications efficiency perthermia cation and pplications Economic
Syllabus Introductio and their pro- techniques, i Properties capacity), O and dielectri Theoretical Buongiorno measuremer Heat Trans mechanisms Data centers in geotherm improvemer Biomedical treatment), I Friction Ree (Nanofluids Challenges and environ ongoing reso Textbooks: 1. "Nanofl	opertia Surfac of Na Optical ic prop I Mode 's tw nt meth sfer & s and c nal en nts), & Ine Imagin ductio in wa and F menta <u>earch</u>)	es, ce n and pert els o-p hod z E lica elec erg dus ng n (stev Fut l in	Synthesis of nodification ofluids: The d Electrical ies). and Exper- hase mode is, Particle nergy App ations in she tronic cool y systems) trial Appl and Diagne (Nanofluids) water treatment ure Trends npacts), Fu	efinition an of Nanoflui n of nanopa hermophysi l Properties rimental To lel), Exper size and ze blications of nell and tub ling system), Nanoflui ications of ostics (Nar s as lubric ment, Chen s: Challeng ture Trends	d history of ids, Prepara articles. ical Propers (Optical p echniques: timental T ta potential of Nanoflu be heat exc is), Renewa ids in Nuc Nanofluids in tants, Tribo nical reaction ges in Nano s and Resea	tion metho rties (Therr roperties an Theoretica echniques analysis). ids: Nanof hangers), C able Energy lear Reacto S: Drug De MRI and C ological pro on enhancer fluid Appli	, Types of r ds (single- mal condu nd applicati al Models (I (Measuren luids in He Cooling of J Systems (Cors (Role i elivery Syst CT imaging operties), E ment). cations (Sta ons (Emerg	hanoparticle step and tw ctivity, Vis ons in sola Maxwell's in hent of th pat Exchang Electronic Nanofluids n coolant ems (Targe g, Contrast Environmen ability and ing applica	es used in r ro-step), St scosity, D r energy, F model, Han nermal co gers (Heat Devices (N in solar co systems, S ted drug d enhancem tal and C agglomera tions, Reco	ability and ensity, Spe Electrical co nilton-Cros nductivity, transfer en Aicrochann ollectors, A Safety and elivery, Hy ent), Lubri hemical A tion issues, ent advance	dispersion ecific heat onductivity sser model, Viscosity hancement el cooling, pplications efficiency perthermia cation and pplications Economic ements and

D · ·			AM	N17263 Ca	arbon Nar	otubes an	d Carbon	Nanostruct	ures		
Designation	1 I	:	Elective								
Pre-requisit	es	:	None								
Credit and			2(1) 0/7								
Contact hrs		:	3(L) - 0(1	(P) - 0(P) - 1	3(Cr)						
			Theory E	Examinatio	n: (Schem	e) End Ser	nester Exa	m: 50 marks	5		
						Mid Se	mester Exa	m: 25 marks	5		
Assessment						Teacher	Assessmen	nt: 25 marks			
Methods		:									
				Assessmen Fests, Term			s (Marks o	n the basis o	f assignme	nt submiss	10 n ,
			The succ	essful stud	ent will lea	arn:					
0							omaterials	and nanosti	ructures.		
Course		:						relationshi		n nanoma	terials and
Outcomes			nanos	structures.	-				-		
			3. To de	emonstrate	uses of nar	nomaterials					
Modes of			Talls and	chalk, Pow	an naint an	acontationa	and preat	ical ata			
Delivery		·	Talk allu	chaik, FOw	er point pro	esentations	, and pract	ical etc.			
Mapping of	course	e oi	itcomes wi	th program	outcomes						
Course	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
outcome	rui		F02	105	104	105	100	107	100	109	1010
CO1											
CO2											
CO3											
				o, propertie			zhalls (`N'I				
and bundled Production presence an of pure and chemical va Structural , twistons, ef nanotubes, carbon nand mechanical Application drug deliver References	I nanot Tech d abse d abse d dope por de Elect fect of effect proper ns of N ry, stru books	tube nic nce d g pos ron int of , ef rtie Nan uctu	es, zigzag a jues of Na of catalysis graphite, hi sition (CVI ic Propert er tube inter chirality ar fect of dop s, physical otubes Ha ral applicar	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structue eractions or nd discrete bing on con properties, rnessing fie tion of CN	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt tral change the electro atoms, co nductivity, optical pro- eld enhance <u>Ts, CNT na</u>	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all sin free st onic structure nducting v electrical operties. ement, flat	Theorem in all/multiwa aper) produce (gned nano- anding and ure, electro- ersus insul properties, panel displities.	al and chiral n cylindrical ll nanotube action using otube synthe tube films. interacting	and defect s, carbon a pulsed lase esis based nanotubes of graphite ubes, band properties,	ive nanotu urc bulk s r vaporiza on Boudo: - librations e as buildin structure chemical	bes. ynthesis in tion (PLV) ir reaction- s, rotations, ng block of of metallic properties,
and bundled Production presence an of pure and chemical va Structural , twistons, ef nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor	d nanoù Tech d abse d abse d dope por de Elect fect of effect otubes proper ns of N ry, stru books n Nano n Nano	tube nice nice d gepose rom int of , ef rtie Van ictue bubb	es, zigzag a ques of Na of catalyss graphite, hi sition (CVI ic Propert er tube inte chirality an fect of dop s, physical otubes Ha ral applicat es, M. End wes: Advance	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structure eractions or nd discrete ping on con properties, rnessing fice tion of CN lo, S. Iijima ced Topics	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt ral change the electro- atoms, conductivity, optical pro- eld enhance Fs , CNT na- in the Synt	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all sin free structure inducting v electrical operties. ement, flat anocompose	re - archira Theorem ir all/multiwa aper) produ CO), nanc gned nano anding and ure, electro ersus insul properties, panel displ ites.	al and chiral n cylindrical ll nanotube uction using pube synthe tube films. interacting nic structure lating nanot vibrational	and defect s, carbon a pulsed lase esis based nanotubes - e of graphite ubes, band properties, gen storage	ive nanotu urc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na	bes. ynthesis in tion (PLV) ir reaction- s, rotations, ng block of of metallic properties, anotubes &
and bundled Production presence an of pure and chemical va Structural , twistons, eff nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor S. Dres	d nanoù Tech d abse d dope por de Electri fect of effect proper ns of N ry, stru books n Nano n Nano	tube nice nce d gepose ron int of , ef rties Van ictube tube tube	es, zigzag a ques of Na of catalyss graphite, hi sition (CVI ic Propert er tube inte chirality au fect of dop s, physical otubes Ha ral applicat ess, M. End ues: Advance	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structu- eractions or nd discrete ping on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt ral change the electro- atoms, conductivity, optical pro- eld enhance Fs , CNT na- in the Synt	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all sin free structure inducting v electrical operties. ement, flat anocompose	re - archira Theorem ir all/multiwa aper) produ CO), nanc gned nano anding and ure, electro ersus insul properties, panel displ ites.	al and chiral n cylindrical ll nanotube action using otube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog	and defect s, carbon a pulsed lase esis based nanotubes - e of graphite ubes, band properties, gen storage	ive nanotu urc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na	bes. ynthesis ir tion (PLV) ir reactions s, rotations ng block of of metallic properties.
and bundled Production presence an of pure and chemical va Structural , twistons, eff nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor S. Dres 3. Carbor	d nanoù Tech d abse d dope por de Electi fect of effect otubes proper ns of N ry, stru books n Nano n Nano sselhau n Nano	tube nice nce d gepose ron int of , ef rtie Van vub otub otub	es, zigzag a ques of Na of catalyst graphite, hi sition (CVI ic Propert er tube inter chirality an fect of dop s, physical otubes Har ral application es, M. End ess: Advance and Gene E actures, Spi	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structu eractions or nd discrete ping on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus ringer.	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt iral change in the electro- atoms, conductivity, optical pro- eld enhance Ts, CNT na a, M. S. Dro in the Syn , Springer.	abe, structures, Euler's single-ward (bucky persion (HIII chesis of all sin free structure nducting vertices electrical operties. ement, flat anocompose esselhaus, Structure thesis, Structure the struct	re - archira Theorem ir all/multiwa aper) produ CO), nanc gned nano anding and ure, electro rersus insul properties, panel displ ites.	al and chiral n cylindrical ll nanotube action using bube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog	and defect s, carbon a pulsed lase esis based nanotubes e of graphite ubes, band properties, gen storage	ive nanotu urc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na	bes. ynthesis in tion (PLV) ir reactions s, rotations ng block of of metallic properties,
and bundled Production presence an of pure and chemical va Structural , twistons, eff nanotubes, carbon nane mechanical Application drug deliver References 1. Carbor 2. Carbor 5. Dres 3. Carbor 4. Physic	d nanoù i Tech d abse d dope por de Electi fect of effect otubes proper as of N ry, stru books n Nano sselhau n Nano s of Ca	tube nice nice d gepose ron int of , ef rties Van ictube otube otube is, a struarbo	es, zigzag a ques of Na of catalyst graphite, hi sition (CVI ic Propert er tube inte chirality an fect of dop s, physical otubes Ha ral applicat es, M. End es: Advance and Gene E actures, Spion Nanostri	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structu eractions or nd discrete bing on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus ringer. uctures, Ste	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt iral change in the electro- atoms, conductivity, optical pro- eld enhance Fs , CNT na a, M. S. Dro in the Syn , Springer.	abe, structures, Euler's single-ward (bucky presion (HIII chesis of all is in free structure nducting v electrical operties. ement, flat anocompose esselhaus, fut thesis, Structure cci, Alexan	re - archira Theorem ir all/multiwa aper) produced CO), nance igned nano anding and are, electro rersus insul properties, panel displicates. Pergamon. acture, Propunder Males	al and chiral n cylindrical ll nanotube action using bube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog	and defect s, carbon a pulsed lase esis based nanotubes - e of graphite ubes, band properties, gen storage	ive nanotu irc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na s, Ado Jor	bes. ynthesis ir tion (PLV) ir reactions s, rotations ng block of of metallic properties anotubes &
and bundled Production presence an of pure and chemical va Structural , twistons, ef nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor 3. Carbor 4. Physic 5. Fullere	I nanoù Tech d abse l dope por de Electi fect of effect proper as of N ry, stru books n Nano sselhau n Nano s of Ca enes, N	tube nice nce goos ron int of , ef rtie Nan otub otub otub structur arbo	es, zigzag a ques of Na of catalysis graphite, hi sition (CVI ic Propert er tube inter- chirality and fect of dop s, physical otubes Ha- ral applicant es, M. Endres: Advand and Gene E- actures, Sp- on Nanostru- otubes, and	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structue eractions or nd discrete bing on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus ringer. uctures, Ste I Carbon N	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt tral change the electri- atoms, conductivity, optical pro- eld enhance T s, CNT na a, M. S. Dra in the Syn , Springer.	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all sin free st onic structure nducting v electrical operties. ement, flat anocompos esselhaus, f thesis, Structure cci, Alexan res, F. D'S	re - archira Theorem ir all/multiwa aper) produ CO), nano ander displation anding and anding and are, electro ersus insul properties, panel displaties. Pergamon. acture, Propunder Malessouza, P. Ka	al and chiral n cylindrical ll nanotube uction using otube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog perties and A evic, Spring amat, N. Ma	and defect s, carbon a pulsed lase esis based o nanotubes - e of graphite ubes, band properties, gen storage Applications er. artin, R. We	ive nanotu irc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na s, Ado Jor	bes. ynthesis ir tion (PLV) ir reactions s, rotations ng block of of metallic properties anotubes &
and bundled Production presence an of pure and chemical va Structural , twistons, ef nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor 3. Carbor 4. Physic 5. Fullere Shinoh	I nanoù Tech d abse d abse l dope por de Elect fect of effect proper ns of N ry, stru books n Nano sselhau n Nano s of Ca enes, N mara, Z	tube nice nce d gepose ron int of , ef rtie Nan ictube tube tube is, a struarbo	es, zigzag a jues of Na of catalysis graphite, hi isition (CVI ic Propert er tube inter- chirality and fect of dop s, physical otubes Hai- ral applican- es, M. Endo- es: Advando- and Gene E- actures, Spi- on Nanostru- otubes, and anina, Y. I-	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structue eractions or nd discrete bing on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus ringer. uctures, Ste I Carbon N wasa, L. W	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt ural change a the electro- atoms, co nductivity, optical pro- eld enhance <u>Ts, CNT na</u> a, M. S. Dre in the Syn , Springer.	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all so in free st onic structure nducting v electrical operties. ement, flat anocompose esselhaus, f thesis, Struc- cci, Alexan res, F. D'S oolladie: EC	re - archira Theorem ir All/multiwa aper) produ CO), nano igned nano anding and are, electro ersus insul properties, panel displites. Pergamon. acture, Propunder Males ouza, P. Ka S Transact	al and chiral n cylindrical ll nanotube uction using pube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog perties and A evic, Spring amat, N. Ma tions: Vol 6,	and defect s, carbon a pulsed lase esis based o nanotubes - e of graphite ubes, band properties, gen storage Applications er. urtin, R. We Issue 16.	ive nanotu urc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na s, Ado Jor eisman, S.	bes. ynthesis ir tion (PLV) ir reactions ng block of of metallic properties anotubes & io, Mildrec Rotkin, H
and bundled Production presence an of pure and chemical va Structural , twistons, ef nanotubes, carbon nand mechanical Application drug deliver References 1. Carbor 2. Carbor 3. Carbor 4. Physic 5. Fullered Shinoh	I nanoù Tech d abse d abse d abse d abse d abse Elect fect of effect otubes proper ns of N ry, stru books n Nano s selhau n Nano s of Ca enes, N ara, Z n Nano	tube nice nce d gepose ron int of , ef rtie Nan ictube tube tube is, a struarbo	es, zigzag a jues of Na of catalysis graphite, hi isition (CVI ic Propert er tube inter- chirality and fect of dop s, physical otubes Hai- ral applican- es, M. Endo- es: Advando- and Gene E- actures, Spi- on Nanostru- otubes, and anina, Y. I-	and armcha anotubes: ts, high pur gh-pressure D), laser ab ies: Structue eractions or nd discrete bing on con properties, rnessing fie tion of CN lo, S. Iijima ced Topics Dresselhaus ringer. uctures, Ste I Carbon N wasa, L. W	to a nanoti ir nanotube Growth of ity materia e co-conve- lation, synt ural change a the electro- atoms, co nductivity, optical pro- eld enhance <u>Ts, CNT na</u> a, M. S. Dre in the Syn , Springer.	abe, structures, Euler's single-ward (bucky p ersion (HII chesis of all so in free st onic structure nducting v electrical operties. ement, flat anocompose esselhaus, f thesis, Struc- cci, Alexan res, F. D'S oolladie: EC	re - archira Theorem ir All/multiwa aper) produ CO), nano igned nano anding and are, electro ersus insul properties, panel displites. Pergamon. acture, Propunder Males ouza, P. Ka S Transact	al and chiral n cylindrical ll nanotube uction using otube synthe tube films. interacting nic structure lating nanot vibrational lays, Hydrog perties and A evic, Spring amat, N. Ma	and defect s, carbon a pulsed lase esis based o nanotubes - e of graphite ubes, band properties, gen storage Applications er. urtin, R. We Issue 16.	ive nanotu urc bulk s r vaporiza on Boudo - librations e as buildin structure chemical , carbon na s, Ado Jor eisman, S.	bes. ynthesis in tion (PLV) ir reaction s, rotations ng block o of metallic properties anotubes & io, Mildrec Rotkin, H

				AMN17264	4 Alternate	e Routes to	Steel Man	ufacturing	5		
Designation		:	Elective								
Pre-requisite	es	:	Structure	of Material	ls						
Credit and Contact hrs		:	3(L) - 0(T	(P) - 0(P) - 2	3(Cr)						
Assessment Methods		:	Internal		t: (Scheme		nester Exan Assessment	n: 25 marks :: 25 marks		nt submissio	on,
Course Outcomes		:	The succ	essful stud	ent will lea	rn: late the alte	rnative rou	tes of iron a	and steel m	aking.	
Modes of Delivery	- I · I Talk and chalk Power point presentations practical etc										
Mapping of	course	e oi	itcomes wi	th program	outcomes						-
Course outcome	PO1		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10

CO2	\checkmark	 				
CO3				\checkmark		
CO4		\checkmark				
Grillahua						

<u>Syllabus</u>

Introduction: Need for the development of alternative routes, approaches towards new techniques. Classification of processes.

Principles: Thermodynamic and kinetic aspects of iron ore reduction in solid and liquid state using solid/gaseous reductants.

Methods : Sponge iron production using shaft, kiln, retort and rotary hearth reactors. Raw materials preparation. Selection of reductants. Heat and mass transfer. Energy consumption and operating problems. Storage, transportation and utilization of sponge iron in India.

Pre-Reduced Pellets and Powders: Pre-reduced iron ore pellets for blast furnace applications, concept of composite pellets and its feasibility. Iron powder and iron carbide preparation from fluidised bed reactor and other processes. Operating/storage problems.

Smelting-Reduction Processes: Principles, classification, merits and limitations. 69 COREX process and electric smelting processes.

Steel Making: Continuous and direct steel making.

References books

1. L.Von Bogdandy and H.J. Engell: Reduction of Iron Ores, Springer.

- 2. R.R. Rogers (ed.): Proc. of Symp. Iron Ore Reduction, Pergamon.
- 3. A Chatterjee: Sponge iron production by direct reduction of iron oxide,PHI,New Delhi,2010
- 4. A Chatterjee: hot metal production by smelting reduction of iron oxide, PHI,New Delhi,2010

5. RH Tupkary : Modern iron making, Khanna publishers, New delhi

6. Proc. of Int. Conf. on Alternative Routes to Iron & Steel under Indian Conditions, IIM Jamshedpur 1988.

7. A. Chatterjee, R. Singh and B. Pandey: Metallics for Steel making Production and Use, Allied Publisher